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p(x∣θ) =  p(z  ∣θ)p(z  ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable
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Likelihood ratio
The likelihood ratio

is the quantity that is central to many statistical inference procedures.

Examples

Frequentist hypothesis testing

Supervised learning

Bayesian posterior sampling with MCMC

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0
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Gilles already explained that
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Bayesian inference
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On-going project
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We want to evaluate , where:

 is your chosen prior.

 the unknown/intractable likelihood
function:

 the marginal distribution of the data.

Bayesian inference

p(θ∣x) =  p(x)
p(θ)p(x∣θ)

p(θ)

p(x∣θ)

p(x)
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Approximate Bayesian
Computation (ABC)

Issues

How to choose ? ? ?

No tractable posterior.

Need to run new simulations for new data or new prior.

x′ ϵ ∣∣ ⋅ ∣∣
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Amortizing Bayes
The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

p(θ∣x) =  = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =  

p(x)
p(x∣θ)
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Amortizing Bayes
The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

The likelihood-to-evidence ratio can be approximated a classi�er trained to
distinguish  from , hence enabling direct and amortized
posterior evaluation.

p(θ∣x) =  = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =  

p(x)
p(x∣θ)

x ∼ p(x∣θ) x ∼ p(x)
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 (We use the prior)

 (We use the
simulator)

This means that 

 (We use the prior)

 (We sample at random
from the simulated x)

This means that 

Proof (1)
Proposition:

An optimal Bayesian classi�er approximates the likelihood-to-evidence

ratio .

Suppose the following classi�cation problem:

(x∣θ) =  r̂ p(x)
p(x∣θ)

H  0

θ ∼ p(θ)

x ∼ p(x∣θ)

X = (θ,x) ∼ p(θ,x)

y = 0

p(H  ) = 0.50

H  1

θ ∼ p(θ)

x ∼ p(x)

X = (θ,x) ∼ p(θ)p(x)

y = 1

p(H  ) = 1 − p(H  ) = 0.51 0
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Proof (2)
Reminder:

, a discriminator.

 (BCE).

Let's rewrite this:

d  (X) : R → 0, 1ϕ
n [ ]

ϕ = arg  maxE  log(d  (X))1  + log(1 − d  (X))1  ϕ p(X,y) [ ϕ y=1 ϕ y=0]

  

=

=

=

=

E  log(d  (X))1  + log(1 − d  (X))1  p(X,y) [ ϕ y=0 ϕ y=1]

p(X, y) log(d  (X))1  + log(1 − d (X))1  dXdy∫ [ ϕ y=0 ϕ y=1]

p(X∣y = 0)p(y = 0) log(d  (X)) + p(X∣y = 1)p(y = 1) log(1 − d  (X)) dXdy∫ [ ϕ ϕ ]

 p(X∣y = 0) log(d  (X)) + p(X∣y = 1) log(1 − d  (X)) dXdy
2
1 ∫ [ ϕ ϕ ]

F (d  ).ϕ
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Proof (3)

When is  maximized?

F(d) is strictly concave because the (non-null) sum and integral of
strictly concave functions is strictly concave. So we have a unique
maximum.

Let's derive the quantity  which maximizes :

F (d)

d⋆ F

  

0 =    

∂d
∂F (d)

∣
∣
d=d⋆

=   p(X∣y = 0) log(d(X)) + p(X∣y = 1) log(1 − d(X)) dXdy   

∂d
∂

2
1 ∫ [ ] ∣∣d=d⋆

=   −  dXdy   .
2
1 ∫ [

d(X)
p(X∣y = 0)

1 − d(X)
p(X∣y = 1)] ∣

∣
d=d⋆
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Proof(4)

When is  maximized?

Finding a  cancelling  is su�cient:

We can �nd the likelihood ratio between the two classes as:

Plugging back our de�nition of  and  we obtain the likelihood-to-
evidence ratio:

F (d)

d⋆
 −  [

d(X)
p(X∣y=0)

1−d(X)
p(X∣y=1)]

 −  = 0 → d =  .[
d⋆

p(X∣y = 0)
1 − d⋆

p(X∣y = 1)] ⋆

p(X∣y = 0) + p(X∣y = 1)
p(X∣y = 0)

r(X) =  =  

1 − d (X)⋆

d (X)⋆

p(X∣y = 1)
p(X∣y = 0)

H  0 H  1

r(X) = r(x, θ) =  =  .
p(x)p(θ)
p(x, θ)

p(x)
p(x∣θ)
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Bayesian inference
We now have access to the likelihood-to-evidence ratio , which

can be weighted by the prior value to obtain the posterior.

This quantity can be used to sample from the posterior (MCMC) and draw
credible intervals.  

r(x, θ) =  

p(x)
p(x∣θ)

r(x, θ)p(θ) =  = p(θ∣x)p(x)
p(x∣θ)p(θ)
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Back to frequentist analysis
We now have acccess to the likelihood ratio between any pair of parameters:

.

Wilks theorem

Consider the test statistic

for a �xed number  of observations  and where  is the maximum
likelihood estimator.

When , .

r(x, θ  , θ  ) =  =  0 1
p(x∣θ  )1

p(x∣θ  )0

r(x, θ  )1

r(x, θ  )0

q(θ) = −2  log  = −2  log r(x∣θ, )
x

∑
p(x∣ )θ̂

p(x∣θ)

x

∑ θ̂

N {x} θ̂

N → ∞ q(θ) ∼ χ  2
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GW: In practice
Data

 are timeseries (2 seconds of signal) and  the parameters
of interest (the two merger's masses).

100k generated data ( ).

Classi�er

A deep neural network made of the combination between  convolutions,
residual connections and hypernetworks.

Why?

The marginalization with respect to a subset of parameters is amortized along
the NN training. Thus once trained, the network is very fast to evaluate the
marginal 

x ∈ R8192 θ ∈ R2

H  0

1D

p(m  ,m  ∣x) = p(m  ,m  ,χ  , d,ϕ  , ...)dχ  dddϕ  ...1 2 ∫ 1 2 eff t eff t
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1D convolutions

Commonly used to process timeseries with a-
priori known size. They are faster and easier to
train than recurrent neural networks.

Residual connections

Commonly used for large neural networks in
order to resolve the vanishing gradient problem.

Hypernetworks

A "hypernetwork" takes as input the parameters 
and outputs the weights of the convolution �lters.
The purpose is to modulate the way the
waveform is processed depending on the
parameters value.

GW: Neural Architecture

θ

17 / 19



Summary
Much of modern science is based on "likelihood-free" simulations.

The likelihood-ratio is central to many statistical inference procedures,
regardless of your religion.

Supervised learning enables likelihood-ratio estimation.

(Gilles Louppe: Better likelihood-ratio estimates can be achieved by
mining simulators).
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Thank you for the invitation!
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