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A few days ago...
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Parameters

6

A 4

Simulator

Latent z

Credits: Johann Brehmer.

Prediction: e Well-understood mechanistic model
e Simulator can generate samples
Inference: e Likelihood function p(z|@) is intractable

Inference based on estimator 5 (z|0)

Observables

T



p(z|0)

/// P(2,|0)D(25 |2, )0(24] 25 )D(% | 24) dzpd s dzg

N~~~

intractable
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Likelihood ratio

The likelihood ratio

p(z|6o)

000 =l

is the quantity that is central to many statistical inference procedures.

Examples

» Frequentist hypothesis testing
e Supervised learning

» Bayesian posterior sampling with MCMC
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Gilles already explained that

he frequentist (physicist's) way

The NeymangPearson lemma states that the likelihood ratio 0,

[pplied Statistics, University College, London.
(Communicated by K. PEARsoN, F.R.S.)
(Received August 31, 1932.—Read November 10, 1932.)
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Bayesian inference



On-going project

le—21 Received signal le—22 True signal without noise
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Bayesian inference

p(0)p(x|6)

@) Where:

We want to evaluate p(0|x) =

« p(0) is your chosen prior.

o p(x|0) the unknown/intractable likelihood
function:

 p(x) the marginal distribution of the data.
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Approximate Bayesian
Computation (ABC)

_l

Summary Summary Observed
Prior Parameters Simulator Observables  statistics statistics data
!/
p(f) —— ) —— —_— 1 — Tohs ——— Tobs
< A _
Keep < Ves ||T _'EobsH <e?

Parameters sampled from
approximate posterior

0°=" p(6z! )

“obs

lssues

e How to choose z'? €? || - ||?

» No tractable posterior.

e Need to run new simulations for new data or new prior.

Credits: Johann Brehmer.



Amortizing Bayes

The Bayes rule can be rewritten as

p(z]0)p(0)
p(z)
p(z|6)

@) is the likelihood-to-evidence ratio.

p(f]z) = = 7(z|0)p(0) ~ 7 (2|0)p(6),

where r(z|0)
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Amortizing Bayes

The Bayes rule can be rewritten as

p(z|0)p(0)
p(z)

where r(z|0) = %a’g) is the likelihood-to-evidence ratio.

p(f]z) = = 7(z|0)p(0) ~ 7 (2|0)p(6),

The likelihood-to-evidence ratio can be approximated a classifier trained to
distinguish z ~ p(x|@) from = ~ p(z), hence enabling direct and amortized
posterior evaluation.
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Proof (1)

Proposition:
An optimal Bayesian classifier approximates the likelihood-to-evidence
ratio #(z]0) = 225

Suppose the following classification problem:

Ho Hl

6 ~ p(0) (We use the prior) 6 ~ p(0) (We use the prior)

z ~ p(x|0) (We use the z ~ p(z) (We sample at random
simulator) from the simulated x)

This means that This means that
X =(0,z) ~ p(6,z) X = (0,z) ~ p(8)p(z)

° 'y:O ° 'y:].
p(Hp) =05 p(H1) =1—p(H) =0.5
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Proof (2)

Reminder:

e dy(X) : R" — [0, 1], a discriminator.
« ¢ = argy maxE,x ) [log(dy(X))1y=1 + log(1 — dy(X))1,=0] (BCE).

Let's rewrite this:

Ep(x .y log(dg(X))1y=0 + log(1 — dg(X))1y=1]
- / (X, 1) [log(dy (X)) 1y + log(1 — dy(X))1,_1] dXdy

— [ 1pCXly = 0)ply = 0) log(da(X)) + p(X]y = 1)p(y = 1) og(1 - dy(X))] dXdy

1

—5 | [P(Xly = 0) log(da((X)) + p(X]y = 1) og(1 — dy(X))] dXdy

—F(dy).



Proof (3)

\When is F'(d) maximized?

F(d) is strictly concave because the (non-null) sum and integral of
strictly concave functions is strictly concave. So we have a unique
maximum.

Let's derive the quantity d* which maximizes F'.

) OF@)
ad o=
_ %% / [p(X]y = 0)log(d(X)) + p(X|y = 1) log(1 — d(X))] dXdy|,_,

1 [ p(Xly=0) pXly=1)
‘5/ [ 1 1-dm) ) E Wl
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Proof(4)

\When is F'(d) maximized?

p(X[y=0)  p(X|y=1)

a(X) 1-d(X)

Finding a d* cancelling [ ] is sufficient:

p(Xly=0) pXly=1)] . _
d* 1 —dx _O_>d_p

p(X|y =0)
(Xly=0)+p(Xly=1)

We can find the likelihood ratio between the two classes as:

4 p(Xly=0)
= d(X) ~ p(Xly=1)

r(X)

Plugging back our definition of Hy and H; we obtain the likelihood-to-
evidence ratio:

p(,6) _ plz/6)
p(@p6) ~ pla)

r(X)=r(z,0) =
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Bayesian inference

We now have access to the likelihood-to-evidence ratio r(z, ) = pz()fg) . which

can be weighted by the prior value to obtain the posterior.
x|0)p(0
(2, 0)p(0) = PEEE = p(6]2)

» This quantity can be used to sample from the posterior (MCMC) and draw
credible intervals.

Density MCMC Reration

Ll R I A T
o = ko k@D N b B o=

N(8:1,0)

St6p 1 F(Breu s B11) = Posterion 8. . Beta(1.1,0.306) x Binomial({10.4, 0.306) - 0834

Posterior(8,, ) Beta(1,1,0.429) x Binomial(10,4, 0.429)

Step 2: Acceptance probability a{B.., 8.1) = min{r(B..,.8.:),1} = min{0.834, 1} = 0.834
Step 3: Draw u ~ Uniform{0,1) = 0.617

Stepd: I u<afw.,04) = If 0617 <0834 Then

6 ew = 0,306
Otherwise 8

5]
8., = 0.429
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Back to frequentist analysis

We now have acccess to the likelihood ratio between any pair of parameters:

r(z,0,61) = p(x|6o) _ r(z, )

p(z|61)  r(z,01)

Wilks theorem

Consider the test statistic

q(0) = 2 log p(2lf) _ 23 " log (6, 6)

—~ " p(z]0)

for a fixed number N of observations {z} and where 6 is the maximum
likelihood estimator.

When N — o0, q(0) ~ xa.
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GW: In practice

Data

o x € R8192 gre timeseries (2 seconds of signal) and 8 € R? the parameters
of interest (the two merger's masses).

e 100k generated data (Hy).

Classifier

A deep neural network made of the combination between 1.D convolutions,
residual connections and hypernetworks.,

Why?

The marginalization with respect to a subset of parameters is amortized along
the NN training. Thus once trained, the network is very fast to evaluate the

marginal p(m1, ma|z) = [ p(m1,ma, Xerf, d, Pty ... )dXesrdddy...
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GW: Neural Architecture

1D convolutions

Commonly used to process timeseries with a-
priori known size. They are faster and easier to
train than recurrent neural networks.

Residual connections .

weight layer

Commonly used for large neural networks in Fx) Trelu
order to resolve the vanishing gradient problem. | weightlayer |

X
identity

Hypernetworks

A "hypernetwork" takes as input the parameters 6 N A A
and outputs the weights of the convolution filters. R TR S
The purpose is to modulate the way the

waveform is processed depending on the

parameters value.
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Summary

e Much of modern science is based on "likelihood-free" simulations.

e The likelihood-ratio is central to many statistical inference procedures,
regardless of your religion.

o Supervised learning enables likelihood-ratio estimation.

» (Gilles Louppe: Better likelihood-ratio estimates can be achieved by
mining simulators).

_

Simulator

Parameters Observables

0

Latent z > x
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Thank you for the invitation!
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The end.



