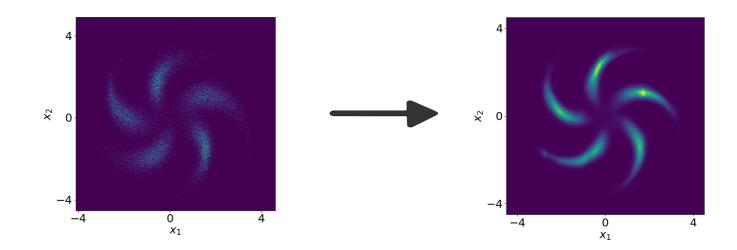


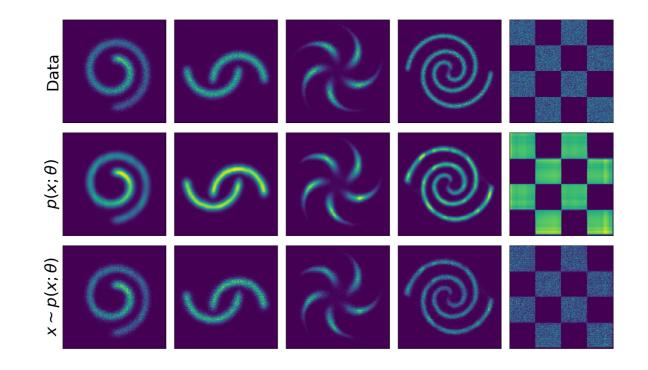
Normalizing Flows and Bayesian Networks

CogSys seminar, October 2020 Antoine Wehenkel

• Access to the model's likelihood



- Access to the model's likelihood
- Universal density estimators

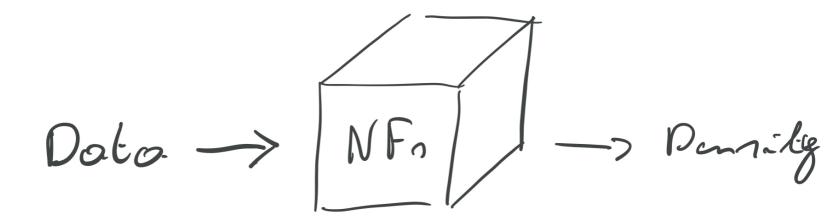


NFs pros 🦾

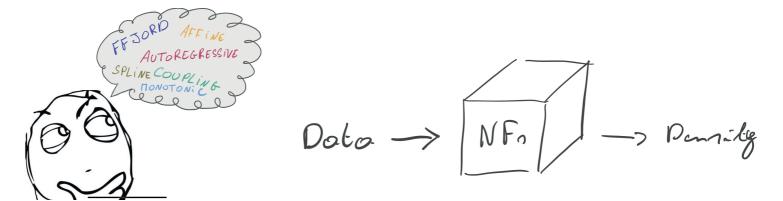
- Access to the model's likelihood
- Universal density estimators
- Good results for high dimensional data

• Arbitrary architectural choices

- Arbitrary architectural choices
- Hard to interpret

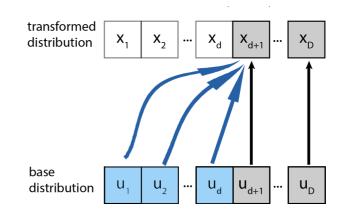


- Arbitrary architectural choices
- Hard to interpret
- Poor inductive bias



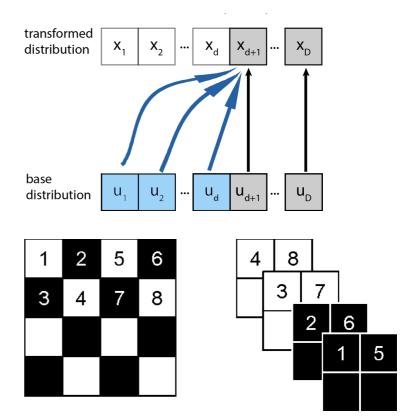
How is it tackled now?

- For images:
 - Coupling layers



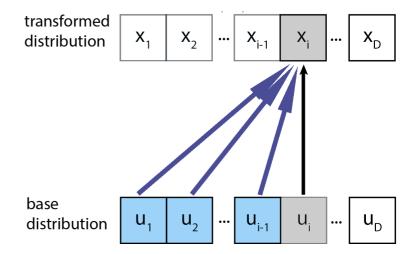
How is it tackled now?

- For images:
 - Coupling layers
 - Multi-scale architectures



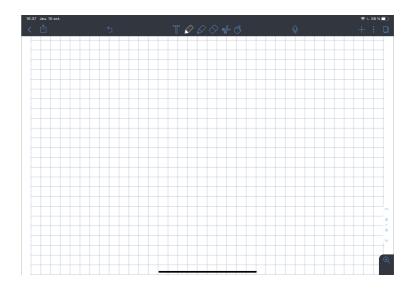
How is it tackled now?

- For images:
 - Coupling layers
 - Multi-scale architectures
- For time series:
 - Autoregressive architectures



How is it tackled now?

- For images:
 - Coupling layers
 - Multi-scale architectures
- For time series:
 - Autoregressive architectures
- What about tabular data or mixed data?



It is not easy to design the architecture and to understand the modeling assumptions!

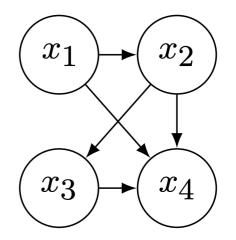
Bayesian Networks

- Probabilistic graphical models formally introduced by Judea Pearl in the 80's
- A Bayesian network is a directed acyclic graph that factorizes the model distribution as

$$p(\mathbf{x}) = \prod_{i=1}^{D} p(x_i | \mathcal{P}_i).$$

• e.g when d = 4:

 $p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)p(x_4|x_1,x_2,x_3)$



 Good for modeling independencies and check their global impact on the modeled density

BNs: pros 🦾 and cons 😈

- Good for modeling independencies and check their global impact on the modeled density
- Applications across science and technology

BNs: pros 🦾 and cons 😈

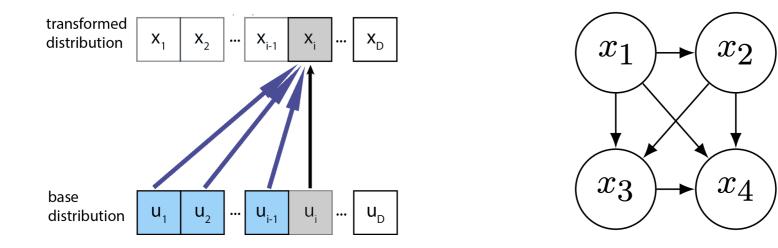
- Good for modeling independencies and check their global impact on the modeled density
- Applications across science and technology 💪
- Often used with discrete or discretized data $\overline{{\it o}}$

BNs: pros 🦾 and cons 😈

- Good for modeling independencies and check their global impact on the modeled density
- Applications across science and technology 💪
- Often used with discrete or discretized data $\overline{ec w}$
- Outdated with respect to deep learning revolution $\overline{{\it o}}$

Some NFs are BNs

Autoregressive layers

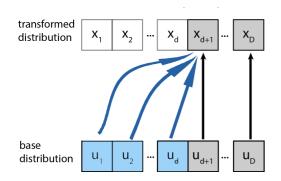


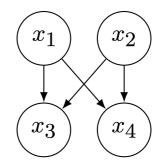
The autoregressive conditioner is defined as $\mathbf{c}^{i}(\mathbf{u}) = \mathbf{h}^{i} \left(\begin{bmatrix} u_{1} & ... & u_{i-1} \end{bmatrix}^{T} \right)$. We combine the conditioner with a transformer/normalizer: $x_{i} = f(u_{i}; \mathbf{c}^{i}(\mathbf{u}))$.

An autoregressive density estimator learns the chain rule's factors: $p(\mathbf{x}) = p(x_1) \prod_{i=2}^{D} p(x_i | x_1, ..., x_{i-1}).$

Some NFs are just BNs

Coupling layers





The coupling conditioner can be defined as $\mathbf{c}^i(\mathbf{u}) =$

• $\underline{\mathbf{h}}^i$ if $i \leq d$ (a constant);

•
$$\mathbf{h}^{i} \left(egin{bmatrix} u_{1} & ... & u_{d} \end{bmatrix}^{T}
ight)$$
 if $i > d$

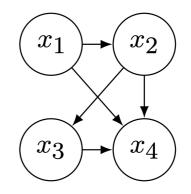
Coupling learns the factors of the following factorization: $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i) \prod_{j=k+1}^{D} p(x_j | x_1, ..., x_d).$

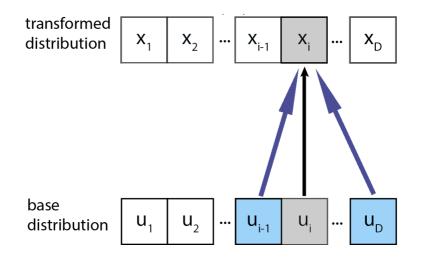
Can any BN lead to a NF layer? 💡

Can any BN lead to a NF layer? 💡

The graphical conditioner

Let $A \in \{0, 1\}^D$ be the adjacency matrix of a given Bayesian network for a random vector $\mathbf{x} \in \mathbb{R}^d$. We define the graphical conditioner as: $\mathbf{c}^i(\mathbf{u}) = \mathbf{h}^i(\mathbf{u} \odot A_{i,:}).$



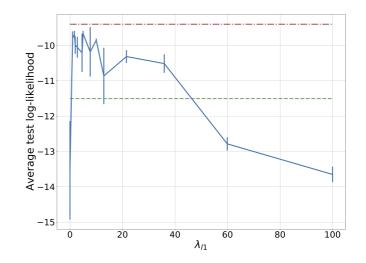


Is it useful in practice?

- It can be critical or convenient to ensure some independencies.
 - E.g. assuming independencies between gender and salary.

Is it useful in practice?

- It can be critical or convenient to respect some independencies.
 - E.g. assuming independencies between sex and salary.
- Knowing the topology helps learning good densities.

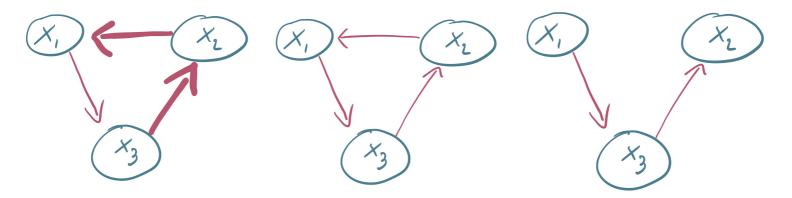


• Any BN corresponds to a DAG, but any DAG can be seen as the topology of a BN as well.

- Any BN corresponds to a DAG, but any DAG can be seen as the topology of a BN as well.
- We look for the DAG that maximizes the model's likelihood: $\max_{A\in \mathbb{R}^{d imes d}} F(A)$ s.t. $\mathcal{G}(A)\in \mathsf{DAGs}.$

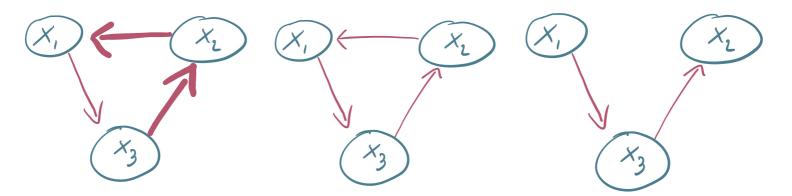
- Any BN corresponds to a DAG, but any DAG can be seen as the topology of a BN as well.
- We look for the DAG that maximizes the model's likelihood: $\max_{A\in \mathbb{R}^{d imes d}} F(A)$ s.t. $\mathcal{G}(A)\in \mathsf{DAGs}.$
- We can formulate it as a continuous constraint:

$$\max_{A\in \mathbb{R}^{d imes d}} F(A)$$
 s.t. $w(A)=0$ where $w(A):=\mathrm{Trace}\left(\sum_{i=1}^{D}A^{i}
ight)$.



- Any BN corresponds to a DAG, but any DAG can be seen as the topology of a BN as well.
- We look for the DAG that maximizes the model's likelihood: $\max_{A\in \mathbb{R}^{d imes d}} F(A)$ s.t. $\mathcal{G}(A)\in \mathsf{DAGs}.$
- We can formulate it as a continuous constraint:

$$\max_{A\in \mathbb{R}^{d imes d}} F(A)$$
 s.t. $w(A)=0$ where $w(A):=\mathrm{Trace}\left(\sum_{i=1}^{D}A^{i}
ight)$.

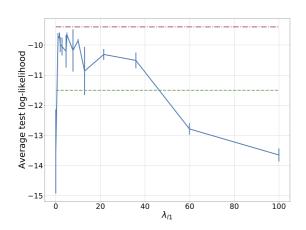


• We can solve the continuously constrained problem with a Lagrangian formulation!

Computational cost

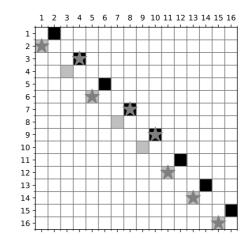
- Solving the sub-problems to optimality increases computational cost $\overline{ec w}$
- As fast as autoregressive or coupling layers at inference time igsilon
- The inversion of the flow will be often faster than autoregressive architectures 🦾

Known vs Unknown Topology (Monotonic transformer)



Effect of sparsity

Topology recovered



Learning a good topology helps for density estimation.

Results

Density estimation benchmark

Dataset	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
GraphUMNN (1)	$0.62 \pm .04$	$^{10.15} \pm .15$	$-14.17 \pm .13$	$-16.23 \pm .52$	$^{155.22}{\pm}.11$
MAF (5)	$^{0.14}{\pm}.01$	$9.07 \pm .01$	$-17.70 \pm .01$	$-11.75 \pm .22$	$155.69 {\pm}.14$
$\operatorname{Glow}^{\star}$ (10)	$^{0.42}{\pm}.01$	$^{12.24}{\pm}.03$	$-16.99 {\pm}.02$	$-10.55 \pm .45$	$^{156.95}{\pm}.28$
UMNN-MAF $*$ (5)	$0.63 \pm .01$	$10.89 \pm .70$	$-13.99 \pm .21$	$-9.67 \pm .13$	$157.98 \pm .01$
$Q-NSF^{\star}$ (10)	$0.66 {\pm .01}$	$^{12.91}{\pm}.01$	$-14.67 \pm .02$	$-9.72 {\pm}.24$	$157.42 \pm .14$
FFJORD* (5-5-10-1-2)	$0.46 \pm .01$	$8.59 \pm .12$	$-14.92 \pm .08$	$^{-10.43} \pm .04$	$^{157.40} \pm .19$

We may obtain density estimation results on par with the best NF architectures.

Perspectives

For graphical NFs

- Could we benefit from graphical NFs independencies with multiple steps?
- What about partial domain knowledge?
- Combine these models with causal reasoning.

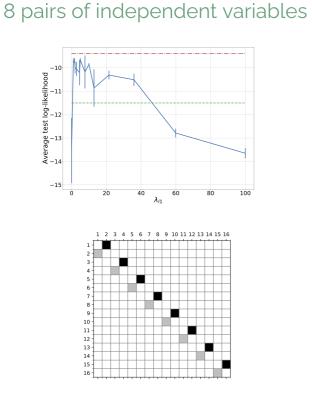
More details about BNs and NFs:

- Graphical Normalizing Flows, A. Wehenkel and G. Louppe, October 2020 https://arxiv.org/abs/2006.02548
- You say Normalizing Flows I see Bayesian Networks, A. Wehenkel and G. Louppe, June 2020 https://arxiv.org/abs/2006.00866

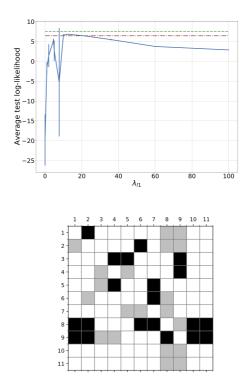
Thanks for listening

Results

Known vs Unknown Topology (Monotonic transformer)



Human protein dataset

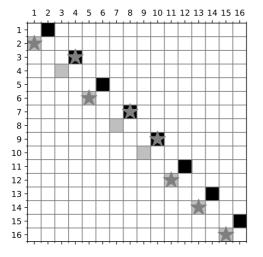


Learning a good topology helps for density estimation.

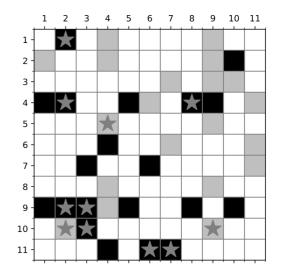
Results

Relevance of the discovered topology (Monotonic transformer)

8 pairs of independent variables



Human protein dataset



The optimization is able to remove spurious dependencies and keeps the correct ones.