
Normalizing Flows for Probabilistic
Modeling and Inference
G. Papamakarios - E. Nalisnick - D. J. Rezende - S. Mohamed -
B. Lakshminarayanan

Advanced Machine Learning Course

March 2020

1 / 20

Motivation

Normalizing �ows provide a general mechanism for
de�ning expressive probability distributions, only
requiring the speci�cation of a (usually simple) base
distribution and a series of bijective transformations

First introduced in 2015.

Let be a dataset, assumed to be iid from the unknown .

A normalizing �ow approximates the distibution by .

 is a very simple normalizing �ow (blackboard).

Can be see as a concurrent method to GAN and VAE.

X ∈ RN×d p x

p x p θ

p = N (μ, Σ)θ

2 / 20

Motivation

Generation: Images and video

―――
https://openai.com/blog/glow/ 3 / 20

https://openai.com/blog/glow/

Motivation

Generation: Audio

4 / 20

Motivation

Inference: Importance and rejection sampling

Example:

Two populations and .

You have the result of applying the function to .

Use a �ow to model the population distributions.

Approximate the average e�ect over the population by

.

X ∼ p 1 x 1 X ∼ p 2 x 2

y 1 f(.) X 1

X 2

 y (i)

N

1

i=1

∑
N

1
p x 1

p x 2

5 / 20

Motivation

Reinforcement Learning

Parameterization of continuous policies:

 modeled by a Normalizing Flow.

Sample actions and evaluate the corresponding density with

.

Optimize with a soft actor critic framework.

p(a ∣s)t t

 = T (z ; s), z ∼ N (0, I) and T ∃ât t t t
−1

―――
https://mc.ai/solving-lunar-lander-openaigym-reinforcement-learning/ 6 / 20

https://mc.ai/solving-lunar-lander-openaigym-reinforcement-learning/

Density Estimation �

Density estimation aims at estimating the pdf of underlying data from an
iid dataset.

7 / 20

Change of Variables Theorem (1)
Given a random variable and a bijective function , how does the

density of behave in terms of and ?

Z f

X = f(Z) p(z) f

8 / 20

Change of Variables Theorem (1)
Given a random variable and a bijective function , how does the

density of behave in terms of and ?

Assume is a uniformely distributed unit cube in , and .

Z f

X = f(Z) p(z) f

p(z) R3 x = f(z) = 2z

8 / 20

Change of Variables Theorem (1)
Given a random variable and a bijective function , how does the

density of behave in terms of and ?

Assume is a uniformely distributed unit cube in , and .

The total probability mass must be conserved, therefore

 where is the

determinant of the linear transformation .

Z f

X = f(Z) p(z) f

p(z) R3 x = f(z) = 2z

p(x = f(z)) = p(z) = p(z) ,
V x

V z
8
1

 = det 8
1

∣∣
∣
∣∣
∣

⎝
⎛2

0
0

0
2
0

0
0
2⎠
⎞
∣∣
∣
∣∣
∣−1

f

―――
https://joerihermans.com/talks/�jord/ 8 / 20

https://joerihermans.com/talks/ffjord/

The Jacobian of represents
the in�nitesimal linear transformation in the
neighbourhood of .

Change of Variables Theorem (2)
What if the transformation is non linear?

J (z)f x = f(z)

z

―――
https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun 9 / 20

https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun

The Jacobian of represents
the in�nitesimal linear transformation in the
neighbourhood of .

Change of Variables Theorem (2)
What if the transformation is non linear?

If the function is a bijective map then the mass must be conserved locally.

Therefore, we can compute the local change of density as

J (z)f x = f(z)

z

―――
https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun

p(x) = p(z) detJ (z) .∣ f ∣−1

9 / 20

https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous

random variable.

10 / 20

Density Estimation

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous

random variable.

 a neural network.

The bijective function takes in samples and maps them to latent variables.

This process is refered as normalization if the latent variables distribution
is normal.

p(x; θ) = p(z = g(x; θ)) detJ (x; θ) , g(.; θ)∣ g ∣

10 / 20

Sampling

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous

random variable.

Once learned, the function can be inverted in order to generate samples.

10 / 20

, can be a NN.

 is autoregressive if it can be decomposed as:

If the are invertible with respect to , is bijective.

Bijectivity with Neural Nets? �

 = g()[z 1 ... z d] [x 1 ... x d] g

g z = g ()i i [x 1 ... x i]

g i x ∀ii g

11 / 20

, can be a NN.

 is autoregressive if it can be decomposed as:

If the are invertible with respect to , is bijective.

Bijectivity with Neural Nets? �

The determinant of the Jacobian can be e�ciently computed.

The Jacobian of an autoregressive tranformation has the following form:

 = g()[z 1 ... z d] [x 1 ... x d] g

g z = g ()i i [x 1 ... x i]

g i x ∀ii g

J (x) = = .g ⎣⎢
⎡ ∂x 1

∂g 1

 ∂x 1

∂g 2

 ∂x 1

∂g 3

 ∂x 2

∂g 1

 ∂x 2

∂g 2

 ∂x 2

∂g 3

 ∂x 3

∂g 1

 ∂x 3

∂g 2

 ∂x 3

∂g 3 ⎦⎥
⎤

⎣⎢
⎡ ∂x 1

∂g 1

 ∂x 1

∂g 2

 ∂x 1

∂g 3

0
 ∂x 2

∂g 2

 ∂x 2

∂g 3

0
0

 ∂x 3

∂g 3 ⎦⎥
⎤

11 / 20

, can be a NN.

 is autoregressive if it can be decomposed as:

If the are invertible with respect to , is bijective.

Bijectivity with Neural Nets? �

The determinant of the Jacobian can be e�ciently computed.

The Jacobian of an autoregressive tranformation has the following form:

Chain Rule

An autoregressive density estimator learns the chain rule's factors:

 = g()[z 1 ... z d] [x 1 ... x d] g

g z = g ()i i [x 1 ... x i]

g i x ∀ii g

J (x) = = .g ⎣⎢
⎡ ∂x 1

∂g 1

 ∂x 1

∂g 2

 ∂x 1

∂g 3

 ∂x 2

∂g 1

 ∂x 2

∂g 2

 ∂x 2

∂g 3

 ∂x 3

∂g 1

 ∂x 3

∂g 2

 ∂x 3

∂g 3 ⎦⎥
⎤

⎣⎢
⎡ ∂x 1

∂g 1

 ∂x 1

∂g 2

 ∂x 1

∂g 3

0
 ∂x 2

∂g 2

 ∂x 2

∂g 3

0
0

 ∂x 3

∂g 3 ⎦⎥
⎤

p(x) = p(x)Π p(x ∣x , ...,x).1 i=2
d

i 1 i−1

11 / 20

A�ne Autoregressive Networks
Idea: Autoregressive Networks combined with linear transformations.

z = σ × x + μ 1 1 1 1

z = σ (x , ...,x) × x + μ (x , ...,x)i i 1 i−1 i i 1 i−1

12 / 20

A�ne Autoregressive Networks
Idea: Autoregressive Networks combined with linear transformations.

Invertible?

z = σ × x + μ 1 1 1 1

z = σ (x , ...,x) × x + μ (x , ...,x)i i 1 i−1 i i 1 i−1

x = g () = g (z) = 1 1
−1 [z 1 ... z d] 1

−1
1 σ 1

(z −μ)1 1

x = i
σ ()i [x 1 ... x i−1]

z −μ ()i i [x 1 ... x i−1]

12 / 20

A�ne Autoregressive Networks
Idea: Autoregressive Networks combined with linear transformations.

But linear transformations are not very expressive:

13 / 20

The only constraint is on the output value which
must be of constant sign (e.g. positive).

This can be achieved by applying an exponential on
the output neuron.

Non a�ne Transformations
How can we enforce the monotonicity of a function modeled by a
neural network

UMNN: Unconstrained Monotonic Neural Network

Possible solution: To model and integrate the derivative.

14 / 20

Finite Composition
Stack multiple bijective transformations:

 and

 for

g = g ∘ ... ∘ g K 1

z = x0 z = zK

z = g (z)k k k−1 k = 1 : K

log ∣J (x)∣ = log ∣ J (z)∣ = log ∣J (z)∣g ∏k=1
K

g k k−1 ∑k=1
K

g k k−1

15 / 20

Finite Composition
Stack multiple bijective transformations:

 and

 for

g = g ∘ ... ∘ g K 1

z = x0 z = zK

z = g (z)k k k−1 k = 1 : K

log ∣J (x)∣ = log ∣ J (z)∣ = log ∣J (z)∣g ∏k=1
K

g k k−1 ∑k=1
K

g k k−1

g = f = f ∘ ... ∘ f

−1
K 1

15 / 20

Autoregressive �ows
 where

The determinant of the Jacobian is equal to the products of .

(See previous slides for more details)

z = τ(x ;h)i i i h = c (x)i i <i

 ∂x i

∂τ(x ;h)i i

16 / 20

Linear �ows
 where

The Jacobian is trivially given by .

It generalizes the idea of permutation.

Example to parameterize :

z =Wx det(W) ≠ 0

det(W)

W

W = PLU

W = Σ

17 / 20

Invertible if is contractive:

The sequence converges to

.

If the function is L-Lipschitz with we
are �ne.

We can combine these functions.

Intractable Jacobian, we can rely on
Hutchinson trace estimator for the
determinant.

Residual �ows
z = F (x) = x+ g (x)θ θ

g : R → Rϕ
d d

∀x,y ∈ Dom , ∥g (x) − g (y)∥ < ∥x− y∥g ϕ ϕ ϕ

x = z− g (x)t ϕ t−1

F (z)ϕ
−1

g θ L < 1

18 / 20

A neural network parameterizes
an ordinary di�erential equation.

.

Solved with numerical integrator.

Backward can be made memory
e�cient by solving another ODE.

Jacobian determinant is
estimated as for res-�ows.

Continuous-time transformations

 = g (t,x)
dt
dx t

ϕ t

z = x = g (t,x)dt + x t 1 ∫
t 0

t 1
ϕ t t 0

19 / 20

Challenges
Inductive Bias

Computation E�ciency

20 / 20

Challenges
Inductive Bias

Computation E�ciency

Inductive Bias

20 / 20

Challenges
Inductive Bias

Computation E�ciency

Inductive Bias

Inductive Bias

20 / 20

Challenges
Inductive Bias

Computation E�ciency

Inductive Bias

Inductive Bias

The problem of density estimation in high dimension is intractable without
strong assumption, so what do we need?

20 / 20

Challenges
Inductive Bias

Computation E�ciency

Inductive Bias

Inductive Bias

The problem of density estimation in high dimension is intractable without
strong assumption, so what do we need?

20 / 20

