
Unconstrained Monotonic Neural Networks
Antoine Wehenkel and Gilles Louppe

What ? UMNN is a new architecture to model monotonic functions. 
How ? The strictly positive scalar output of a neural network is numerically integrated.
Applications ? We combine UMNNs with autoregressive flows to perform density estimation.

Monotonicity Change of variables
In theory

In practice

Monotonicity is hard to enforce positiveness is not !BUT

Derivation

Integration

We only have a cloud of points.

Derivation ?
Solution:
Model the derivative 
and integrate it. 

θ

t ∂f(t)
∂t

1

Numerical integration

Backward

Update

Let g be a bijective function, x a random variable and let y defined as 
g(x). The change of variables theorem states that:

Architecture

Toy problems

fY (y) = fX(g−1(y))
∣

∣

∣
det(Jg−1)

∣

∣

∣

MNIST

y = g(x)

A bijective transformation can be built by the combination of an autore-
gressive architecture with a UMNN.

We combine the UMNN architecture with an autoregressive network to re-
present multi-dimensionnal bijective transformations.

Density Estimation

Fun Facts
1.	 The numerical integration is performed with static Clenshaw-Curtis 

method which is proven to converge for Lipschitz continuous functions. 
2.	 The backward computation is performed by solving numerically ano-

ther integral coming from the Leibnitz integral rule which leads to:

Normalizing flow

x

g

g

:::

g

z

UMNN-MAF

h1 h2 h3

g1 g2 g3

x

UMNN

t

h3
dt

<

x3

z3

Autoregressivity

UMNN

Autoregressive transformations are commonly used to build bijective 
transformations.

g(x; θ) =
[

g1(x1; θ) . . . gi(x1:i; θ) . . . gd(x1:d; θ)
]

The induced multivariate density can be expressed by the chain rule:

p(x; θ) = p(x1; θ)
d−1
∏

i=1

p(xi+1|x1:i; θ).

We combine UMNN with autoregressive transformations as:

gi(x1:i; θ) = F i(xi,h
i(x1:i−1;φ

i);ψi) =

∫

xi

0

f i(t,hi(x1:i−1;φ
i);ψi)+βi(hi(x1:i−1;φ

i))

log p(x; θ) = log pZ(g(x; θ)) +
d

∑

i=1

log f i(xi,h
i(x1:i−1))

UMNN-MAF leads to a simple expression of the Jacobian:

∇ψF (x;ψ) =

∫ x

0

∇ψf(t;ψ) +∇ψβ.

Results


