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Parameter Estimation of Three Phase Untransposed
Short Transmission Lines from Synchrophasor
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Antoine Wehenkel

Abstract—This thesis presents estimation methods for the
parameters of a three-phase untransposed short transmission line
from voltage/current synchro-phasor measurements taken at the
two ends of the line. Due to high sensitivity to measurement
noise, conventional approaches, which use the admittance matrix
to model the line, are not applicable for parameter estimation
for short lines. We propose to use the transmittance matrix to
model the line. We show that the parameters of the transmittance
matrix are less sensitive to measurement noise than that of the
admittance matrix or the impedance matrix. Therefore, using this
model we can obtain more accurate and robust estimates of the
line parameters for short lines. The different methods proposed
are based on different assumptions made on the projection of
the complex measurements in rectangular coordinates. These
methods are ordinary/weighted least squares (OLS/WLS) and
ordinary/weighted total least squares (OTLS/WTLS). Thanks
to an accurate model of the noise in polar coordinates we
are able to compute the covariance matrices of the noise in
rectangular coordinates needed for some of these methods. We
evaluate the accuracy of the proposed methods for different
classes of instrument transformers, and on a variety of lines with
different parameters. We show that OTLS has a poor accuracy,
WTLS has a good accuracy but has prohibitive computational
requirements, OLS has good accuracy and least computational
requirements, and finally WLS has the best accuracy with
fairly low computational requirements. Furthermore we show
the superiority of our approach by comparing it with the state
of the art techniques on a realistic dataset.

I. INTRODUCTION

Large-scale integration of renewable energy sources has
made necessary the development of control methods for dis-
tribution networks because of their stochasticity. Most modern
control methods for electrical grids require the knowledge of
the parameter of the lines to do state estimation, to solve
optimal power flow problems (e.g [1], [2], [3], [4], [5], [6])
or to improve accuracy in relay settings ([7]). However this
knowledge is often absent or very crude due to incomplete
records of installation and updates.

Historically, parameters of electrical lines are obtained by
using the physical properties of the line such as conductor
dimensions, type of wires, tower geometries, etc. (e.g. [8]).
Although this method has been applied successfully for long
transmission lines (TL) present in transport network, it cannot
be easily applied to distribution networks where there is often
no good knowledge of the characteristics of the lines. Another
approach, which requires to disconnect the line during the
measurements, is based on generation of known signals at
one end of the line and precise measurements on the other
side ([9]). Both methods, in addition to being time consuming

and prone to human errors, have the drawback to provide
only static knowledge of the line parameters whereas the
parameters change over time. State of the art control methods
for distribution networks already use phasor measurement
units (PMUs). These devices can also be exploited to do line
parameters estimation while circumventing the drawbacks of
the methods mentioned earlier.

Modern day PMUs have become accurate enough so that
many recent works propose their utilization to estimate line
parameters. More specifically [10], [11] use a single-phase
model of the line and PMU measurements taken from both
ends of a line to estimate its parameters. These methods
are already used in practice for transmission networks ([12]).
However for distribution networks the single phase model
of the line is often not accurate due to the presence of
untransposed lines. Although the problem of three-phase line
parameter estimation is very similar to single-phase estimation,
it requires the estimation of many more parameters which
makes the problem harder. In [13] a method for three-phase
line parameters has been proposed which is based on ordinary
least squares. Although the method is accurate for long lines it
fails in the case of short lines because the model used for esti-
mation is highly sensitive to measurement noise. Moreover as
reported in [14] the method seems to require prior knowledge
of the ranges of the parameters to have acceptable quality of
estimation. Finally all these works lack a realistic noise model.
It makes the results of their simulations of limited use. Several
other methods based on only 1 or 2 measurements (e.g [15])
have been proposed but [13] has proven these methods to be
very inaccurate in the presence of noise.

Contributions: The main contribution of this thesis is to
propose and evaluate methods for accurate and robust esti-
mation of untransposed line parameters for short lines. All
the existing methods for line parameters estimation fails for
short lines due to the high noise sensitivity of the model being
used. To overcome this difficulty, we propose a model based on
the transmittance matrix of the line and show that this model
has less noise sensitivity for short lines compared to other
estimation models. We compare several estimation methods
based on least squares and total least squares techniques. We
show that, for short lines, our method outperforms the state-
of-the-art technique proposed in [13].

We use an accurate model for measurement noise obtained
from transforming them from polar to rectangular coordinates.
The proposed methods are numerically evaluated for a range
of different instruments transformers and on a variety of
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lines with different characteristics. From these evaluations we
conclude that the proposed methods based on the transmittance
matrix formulation is more robust to measurement noises.

The rest of the thesis is organized as follows. In Section II,
we formulate the problem of line parameter estimation using
the transmittance matrix model of the line, we introduce the
noise model used in the thesis, we also present 2 other line
models and we give the definition of the general statistical
model used to describe the estimation methods. In Section
III we describe the proposed estimation methods. Section IV
evaluates the proposed algorithms numerically and compares
the different line models for different lengths of line. The
thesis is finally concluded in Section V.

II. PROBLEM FORMULATION

Fig. 1. Simplified π-model of three phase TL.

A. Transmittance matrix model

We are interested in identifying the parameters of an un-
transposed 3-phase line modelled via its π equivalent circuit
(see Figure 1). The three-phase series impedance and shunt
admittance matrices of the line between the two nodes s and
r are denoted by Zl ∈ C3×3 and Yl ∈ C3×3, respectively.
Let ix, vx ∈ C3 denote the complex three-phase current and
voltage phasors at node x ∈ {s, r}, respectively. The relation
between the phasors at the two terminals can be written as
follows (e.g. [16]):

[
vs

is

]
=

[
I + ZlYl

2 −Zl

Yl

(
I + ZlYl

4

)
−
(
I + YlZl

2

)] [vr
ir

]
, (1)

≈

[
I −Zl

Yl −I

][
vr

ir

]
, (2)

where I ∈ C3×3 denotes the identity matrix. The approxima-
tion in (2) is obtained by using the fact that the product matrix
ZlYl is usually close to the null matrix 0 ∈ C3×3 for lines that
are electrically short (� 100km) (see [17]), i.e., ZlYl ≈ 0.
In what follows, we refer to the matrix on the right hand side
of (2) as the transmittance matrix T.

The objective of the thesis is to estimate the elements of
T or equivalently the elements of Yl and Zl using noisy ob-
servations of vx and ix, x ∈ {s, r}. Exploiting the symmetric
structure of Yl, Zl, and the fact that Yl is assumed to be

purely imaginary, we express the matrices with the following
parametrization

Yl(θ
T) = j

θT1 θT16 θ
T
17

θT16 θ
T
2 θT18

θT17 θ
T
18 θ

T
3

 , (3)

Zl(θ
T) =

θT4 + θT5 j θ
T
6 + θT7 j θ

T
8 + θT9 j

θT6 + θT7 j θ
T
10 + θT11j θ

T
12 + θT13j

θT8 + θT9 j θ
T
12 + θT13j θ

T
14 + θT15j

 , (4)

where θT= [θT1 , ..., θ
T
18]T ∈ R18 is the unknown parameter

vector. The transmittance matrix as a function of the parameter
vector θ is therefore expressed as

T(θT) =

[
I −Zl(θ

T)

Yl(θ
T) −I

]
.

To simplify the estimation problem, we first express (2) in
rectangular coordinates as follows:

ls = T̄(θT)lr, (5)

where

lx =


R(vx)

R(ix)

I(vx)

I(ix)

 ∈ R12, x ∈ {r, s}, (6)

T̄(θT) =


I −R(Zl(θ

T)) 0 I(Zl(θ
T))

0 −I −I(Yl(θ
T)) 0

0 −I(Zl(θ
T)) I −R(Zl(θ

T))

I(Yl(θ
T)) 0 0 −I

 ,
(7)

and R(·), I(·) respectively denote the real and imaginary parts
of a complex variable.

To further simplify the estimation, we convert (5) to the
following standard form

ls = HT(lr)θT + λ(lr), (8)

where

λ(l) =


I 0 0 0

0−I 0 0

0 0 I 0

0 0 0−I

 l, ∀l ∈ R12, (9)

and HT : R12 → R12×18 is a linear map such that HT(l)θT =
T̄(θT)l−λ(l) for all θT ∈ R18 and all l ∈ R12. Given a vector
l ∈ R12, the matrix HT(l) can be very easily computed. The
key idea is that since HT : R12 → R12×18 is a linear map,
each column i of HT(l) is of the form Ωil for some coefficient
matrix Ωi ∈ R12×12, i = 1 : 18, i.e.,

HT(l) = [Ω1l Ω2l . . .Ω18l].
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It is straightforward to see that the jth column of Ωi can be
recovered as

Ωi(:, j) =
[
T̄(θT)l − γ(l)

]
θT=e

(18)
i ,l=e

(12)
j

,

where e(r)
k denotes the kth unit vector in Rr. Pseudo code for

this computation is given in appendix V-F.

Remark. Although the problem formulation presented as-
sumes a model with 18 parameters, the formulation can be
generalized to any other parameter space of size Sθ. Indeed
until now we only considered the most generic type of line,
however in the simulations section we present numerical re-
sults for lines which can be expressed with smaller parameter
space.

B. Other line models

There are other line models that are classically used to link
the voltage and current phasors at two ends of a three phase
line. They are described briefly below:

First, the currents and the voltages of the two ends of the line
are related through the admittance matrix (Y) in the following
way:

i = Y(θT)v, (10)

where

i =

[
ir

is

]
v =

[
vr

vs

]
,

and

Y(θT) =

[(
Zl(θ

T)
)−1

+ Yl(θ
T)

2 −
(
Zl(θ

T)
)−1

−
(
Zl(θ

T)
)−1 (

Zl(θ
T)
)−1

+ Yl(θ
T)

2

]
.

Similarly, they can also be related through the impedance
matrix (Z) in the following way: (the derivation is very easy
using the T model of the line, see Figure 2)

v = Z(θT)i, (11)

where

Z(θT) =

[
Zl(θ

T)
2 + Yl(θ

T)−1 Yl(θ
T)−1

Yl(θ
T)−1 Zl(θ

T)
2 + Yl(θ

T)−1

]
.

In order to express the relationship between the measured
phasors and the unknown parameters in a way similar to what
has been done for the T line model, we need to express the Y
and Z matrices linearly in terms of the unknown parameters of
the line. In terms of the unknowns in θT, the matrices Y and
Z are not linear because of the presence of Z−1

l and Y−1
l . To

have a linear estimation model, therefore, we need to define
two new parameter vectors θY and θZ which respectively
parametrizes Y−1

l and Z−1
l and with respect to which the

Y and Z models are truly linear. The mapping between θY

and θT is defined as

Yl(θ
Y) = Yl(θ

T)

and

Zl(θ
T)−1 =

θY4 + θY5 j θ
Y
6 + θY7 j θ

Y
8 + θY9 j

θY6 + θY7 j θ
Y
10 + θY11j θ

Y
12 + θY13j

θY8 + θY9 j θ
Y
12 + θY13j θ

Y
14 + θY15j

 (12)

(13)

The parameter vector θZ can also be defined similarly.
With the new parameter vectors defined above, we can now

express the complex relationships (10), (11) in rectangular
coordinates (separating the real and imaginary parts) in terms
of the real matrices Z̄(θZ) and Ȳ(θY), whose definitions are
similar to that of T̄(θT) in the T line model (see (5)-(7)).

Fig. 2. Simplified T-model of three phase TL.

C. Noise model

In this subsection, we describe the noise model used in this
thesis. The noisy measurements of lx is denoted as l̃x for
x ∈ {s, r} and are defined as

l̃x = lx + ∆lx , x ∈ {s, r} ,

where ∆lx denotes the noise on lx. To statistically characterize
the noise, we make use of standard specifications of the
measurement devices.

The noise in the measurements are introduced from two
sources: 1) from the instrument transformers (IT’s), i.e., the
voltage transformers for voltage measurements and the current
transformers for current measurements, 2) from the PMU’s. In
this thesis we consider class .1 PMU which are characterised
by a supplementary maximum relative noise of 0.1% on the
magnitude and a maximum absolute noise on the phase equal
to 10−4 (see [18]). For this reason we compute the total
maximum error by summing the errors of the IT’s and PMU’s.
The manufacturers of instrument transformers specify - as
percentages in case of magnitudes and as absolute values
in case of phases - the maximum errors introduced by such
devices. The maximum errors introduced by different classes
of instrument transformers are given in Table I [19]. Note
that the maximum errors are the same for voltage and current
transformers.

We assume that the noise on any variable is Gaussian,
unbiased, and lies within the specified maximum bound with
probability 0.9973. Hence to find the standard deviation, we
divide the value of the maximum error by 3. More specifically,
let ρ and φ respectively denote the magnitude and phase of a
complex quantity w, i.e., w = ρejφ. Then the noise ∆ρ and ∆φ
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on ρ and φ are assumed to be distributed as ∆ρ ∼ N (0, αρ3 ),
and ∆φ ∼ N (0, β/3), where α and β denote the maximum
error in percentage for magnitude and maximum absolute error
for phase, respectively (see Table I for values).

TABLE I
MAXIMUM ERRORS FOR DIFFERENT CLASSES OF INSTRUMENT

TRANSFORMERS (IT).

Transformer
Class

Max. magnitude
error (α) (%)

Max. phase
error (β) (rad)

0.1 0.1 15e-04
0.2 0.2 30e-04
0.5 0.5 90e-04
1 1 180e-04

While the noise is Gaussian in polar coordinates, we use
rectangular coordinates in our estimation procedures. In gen-
eral, the noise projection from polar to rectangular coordinates
does not preserve normality. However, for the parameters
of Table I we observe numerically that the distribution of
the noise transformed to the rectangular coordinates is very
close to Gaussian distribution. This is shown by quantile-
quantile (QQ) plots in Figures 3 and 4 for Class 1 instrument
transformers. We observe that the quantiles of the transformed
noise on both voltage and current match very closely with
those of the standard normal distribution. For this reason we
treat the noise in the rectangular coordinates as Gaussian
random variables. We are conscious that QQ plots only verify
the Gaussianity of marginal density and that other tests would
be required to ensure that the joint density is also Gaussian.

To find the first and second moments of the transformed
noise, we first denote the noisy measurements of magnitude
and phase of the variable w = ρejφ as ρ̃ and φ̃, respectively.
If ∆r and ∆i respectively denote the noise in the real and
imaginary parts, then we have

∆r = ρ̃ cos(φ̃)− ρ cos(φ) (14)

E[∆r] =
(
e−

1
2σ

2
φ − 1

)
cos(φ)ρ (15)

E[∆2
r] =

1

2
(1 +

α2

9
)ρ2(1 + e−2σ2

φ cos(2φ))

+ ρ2 cos2(φ)(1− 2e(− 1
2σ

2
φ)) (16)

∆i = ρ̃ sin(φ̃)− ρ sin(φ) (17)

E[∆i] =
(
e−

1
2σ

2
φ − 1

)
sin(φ)ρ (18)

E[∆2
i ] =

1

2

(
1 +

α2

9

)
ρ2
(

1 + e−2σ2
φ cos(2φ)

)
+ ρ2 sin2(φ)

(
1− 2e−

1
2σ

2
φ

)
(19)

E[∆r∆i] =
1

2
sin(2φ)

[(
1 +

α2

9

)
ρ2e−2σ2

φ

−2ρ2e(−
1
2σ

2
φ) + ρ2

]
, (20)

where E[·] is the expectation operator and σφ = β/3. The
derivations of (14) to (20) are given in V-A We note from (15)
and (18) that the noise in the rectangular coordinates is biased
in general. However, for the parameters of Table I we observe
that the bias is negligible. This is also confirmed by the QQ
plots in Figure 4 and 3. Furthermore, we observe that for the
parameters of interest the real and imaginary part of the noise
have non-negligible correlation. This is usually neglected in
all existing models for line parameter estimation.

The entries of the covariance matrix for ∆x, x ∈
{ls, lr, i, v} can therefore be obtained from the parameters of
Table I using (15)-(20). We note that these entries in general
depend on the true value of x which is unknown in practice.
So in our estimation procedure the entries of the covariance
matrices are computed using the observed values x̃. We have
numerically observed that replacing the true values with the
observed values have a negligible impact on the estimation
procedures proposed in this thesis.
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Fig. 3. QQ plots of errors on voltages measurement taken by class 1 IT.
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Fig. 4. QQ plots of errors on currents measurement taken by class 1 IT.

D. Statistical model

In this section we define a general statistical model which
incorporates any of the three previously discussed line models
(Z, Y, T) and the noise model discussed in Section II-C.

In our cases, the statistical model corresponds to an “error-
in-variables (EIV) linear regression model” [20] and can be
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written as follows if we assume the noise to be zero-mean
Gaussian:

yi = B(θ)xi, (21)
ỹi = yi + ∆yi ∆yi ∼ N (0,Qyi), (22)
x̃i = xi + ∆xi ∆xi ∼ N (0,Qxi), (23)

where ỹi, x̃i ∈ R12 denote the ith noisy phasor measurements
of the true phasors yi, xi ∈ R12; ∆yi ,∆xi ∈ R12 denote
the noise on yi and xi respectively; and Qyi , Qxi ∈ R12×12

respectively denote the noise covariance matrices of ∆yi ,∆xi

(easily computable thanks to (16), (19) and (20)). The link
between yi and xi is given by a matrix B(θ) ∈ R12×12 where
θ ∈ RSθ , the unknown parameter, is a vector parametrizing
linearly B. Because the parametrization is linear we can also
rewrite (21) as

yi = B(θ)xi = H(xi)θ + γ(xi),

with H ∈ R12×Sθ can be computed as detailed for T model
in II-A, and γ(.) : R12 → R12 is a known linear function of
xi.

We can write the statistical model incorporating all the
snapshots of measurements in a more compact way as given
below:

y = B̄(θ)x (24)
ỹ = y + ∆y ∆y ∼ N (0,Qy) (25)
x̃ = x+ ∆x ∆x ∼ N (0,Qx) (26)

where x, y ∈ R12N are defined as:

x =


x1

...
xN

 and y =


y1

...
yN

 (27)

and similarly for their noisy version x̃, ỹ ∈ R12N , B̄(θ) ∈
R12N×12N is a block diagonal matrix composed of B(θ)
matrices. The covariance matrices Qx and Qy are also block
diagonal matrices composed of Qxi and Qyi blocks respec-
tively. Reformulating the right term of (24) in term of vector
θ we have:

y = H(x)θ + γ(x)

with H(x) ∈ R12N×Sθ defined as

H(x) =


H(x1)

...
H(xN )


and

γ(x) =


γ(x1)

...
γ(xN )

 .
It is straightforward to define the log-likelihood function of
this model:

L(x̃, ỹ|θ, x) = (x̃− x)
T

Q−1
x (x̃− x)

+
(
ỹ − B̄(θ)x

)T
Q−1
y

(
ỹ − B̄(θ)x

)
+ const.

(28)

A mapping between statistical model and the three line
models are given in Table II.

TABLE II
MAPPING BETWEEN STATISTICAL MODEL AND LINE MODELS.

Stat. Model T Z Y

yi lsi + γ(lri )
[
R(vTi ) I(vTi )

]T [
R(iTi ) I(iTi )

]T
xi lri

[
R(iTi ) I(iTi )

]T [
R(vTi ) I(vTi )

]T
B T̄ Z̄ Ȳ

γ(.) λ(.) 0 0
θ θT θZ θY

Where the subscript i denotes the ith observation.

III. PROPOSED ESTIMATION METHODS

We now describe different estimation methods in terms
of the statistical model defined in the previous section. The
objective is to estimate the parameter vector θ from the noisy
observations x̃ and ỹ. To evaluate different estimation methods,
in addition to the true statistical model, we use different
approximations of the true model as described below.

A. Maximum Likelihood estimator - Weighted Total Least
Squares

The maximum likelihood estimator, also named Weighted
Total Least Squares (WTLS) uses the true statistical model
defined before to compute an estimator of θ. Clearly, from
(28) the estimator can be found by solving the following
minimization problem:

min
θ

min
x

(x̃− x)
T

Q−1
x (x̃− x)

+
(
ỹ − B̄(θ)x

)T
Q−1
y

(
ỹ − B̄(θ)x

)
(29)

We note that the inner minimization problem on x is convex
and therefore can be solved in closed form as a function of θ.
The solution x̂(θ) is given as

x̂(θ) =
(
Q−1
x + B̄T (θ)Q−1

x B̄(θ)
)−1

×
(
Q−1
x x̃+ B̄T (θ)Q−1

y ỹ
)
, (30)

Finally, to solve for the optimal θ we solve the following
problem:

θ̂ml = arg min
θ

(x̃− x̂(θ))
T

Q−1
x (x̃− x̂(θ))

+ (ỹ −H(x̂(θ))θ − γ(x̂(θ)))
T

Q−1
y

× (ỹ −H(x̂(θ))θ − γ(x̂(θ))) .

We note that the above optimization problem is non-convex
and we use MATLAB fminunc to solve it.
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B. Ordinary Total Least Squares

The ordinary total least squares (OTLS) method is classi-
cally used in error in variables regression [21], [20]. Here, the
objective is to estimate a parameter matrix U ∈ Cp×q which
satisfies the linear relationship

CU = D (31)

with C ∈ Cn×p and D ∈ Cn×q from noisy observations C̃ of
C and D̃ of D. Note that in ordinary least squares regression,
errors are assumed to be present only in the matrix D. In the
special case where D and U are vectors (q = 1) we denote
them by lower cases d and u.

In general (31) can be rewritten in the following form

[
C D

] [ U

−Iq×q

]
= 0n×q. (32)

The above can be used to find the denoised version Ĉ and D̂
of C̃ and D̃ as follows:

Ĉ, D̂ = arg min
C,D

∥∥∥[C D
]
−
[
C̃ D̃

]∥∥∥
F

(33)

subject to rank
([

C D
])
≤ q. (34)

Note that the rank constraint in the above optimization is
equivalent to the existence of a parameter matrix U ∈ Rp×q
satisfying (32). The above optimization is an instance of
the low rank approximation problem for the observed data
matrix

[
C D

]
and can be solved using the singular value

decomposition (SVD) of
[
C̃ D̃

]
. Let the SVD of

[
C̃ D̃

]
be

[
C̃ D̃

]
=
[
UC UD

] [ ΣC 0p×q

0q×p ΣD

][
VC,C VC,D

VD,C VD,D

]∗

where A∗ denotes the matrix conjugate of A ∈ Cn×n.
Then the parameter matrix U is estimated as (see [21]):

Ûtls = −VC,DV−1
D,D. (35)

We note that Ĉ, D̂ are the maximum likelihood estimates
of C,D only when the noise

[
∆C ∆D

]
on the data matrix[

C D
]

has independent and identically distributed (zero-
mean Gaussian) rows which is an approximation of the true
statistical model.

1) Structured OTLS: The structured OTLS (SOTLS) prob-
lem in the context of the estimation problem of θ is solved by
putting

C = H(x), u = θ, d = y − γ(x). (36)

The estimate θ̂tls of θ can therefore be obtained using (35).

2) Unstructured OTLS: The unstructured OTLS (UOTLS)
problem in the context of the estimation problem of B is
solved by putting

C =


xT1
...
xTN

 , U = BT , D =


yT1
...
yTN

 . (37)

Remark. In the particular case of T model we can estimate
independently Zl and Yl by splitting (2) into two independent
equations such as:

vs − vr = −Zli
r, (38)

is + ir = Ylv
r. (39)

We can equivalently write:

vs − vr = Zli
s, (40)

is + ir = Ylv
s. (41)

We can solve these 4 equations by unstructured TLS. We
then obtain 4 estimates Ẑ1

l , Ẑ
2
l , Ŷ

1
l , Ŷ

2
l . In order to also

incorporate symmetry in the estimated matrices we get the
final estimates by:

Ẑl =
(Ẑ1

l + Ẑ2
l ) + (Ẑ1

l + Ẑ2
l )
T

4
(42)

Ŷl =
(Ŷ1

l + Ŷ2
l ) + (Ŷ1

l + Ŷ2
l )
T

4
(43)

C. Weighted and Ordinary Least Squares

In the method of ordinary or weighted least squares, the
noise on the right hand side of (24) is ignored, i.e., it is
assumed that x̃ = x. In this case, the classical least squares
estimation formula for weighted least squares (WLS) yields
the following estimate of θ:

θ̂wls =
(
H(x̃)TQ−1

y H(x̃)
)−1

H(x̃)TQ−1
y (ỹ − γ(x)), (44)

The ordinary least squares (OLS) estimate of θ is obtained by
replacing Qy in the above by the identity matrix.

If the assumption x̃ = x holds, the estimations methods
presented are optimal and are equivalent to maximum like-
lihood solution. However this assumption does not hold in
practice and it is a-priori difficult to know what is its impact
on the quality of the estimation. In the appendix we show that
under EIV model WLS and OLS are asymptotically biased.
We provide the derivation and expression of the asymptotic
bias in V-B.

Remark. For the T model, in addition to WLS methods we
can derive another method which re-establishes the symmetry
of the problem. Indeed WLS makes the assumption that the
noise is only present on one side of the line which is not true
in practice. In particular the problem has a symmetry which
should be exploited, we have

ls = T̄(θT)lr and lr = T̄(θT)ls.

An iterative scheme where WLS is used to denoise the obser-
vation from one side and then use the denoised version of the
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observation to estimate θ and also a denoised version of the
observation of the other side and so on could help to make
the assumption l̃ri = lri true such that the estimation could be
improved. The pseudocode of this iterative scheme is given in
Algorithm 1. In the rest of the thesis we name this method
iterative WLS (IWLS).

Algorithm 1 IWLS

1: procedure θIWLS(L̃r, L̃s,QLs ,QLr )
2: L̂r ← L̃r

3: θ1 ← [0 . . . 0]
4: θ2 ← [0 . . . 0]
5: ds ← DMAPPING(L̂s, L̂r)
6: dr ← DMAPPING(L̂r, L̂s)
7: do
8: θsum ← θ1 + θ2

9: Cr ← CMAPPING(L̂r)

10: θ1 ←
(
CrTQ−1

LsCr
)−1

CrTQ−1
Ls d

s

11: L̂s ← Crθ
12: Cs ← CMAPPING(L̂s)

13: θ2 ←
(
CsTQ−1

LrCs
)−1

CsTQ−1
Lr d

r

14: L̂r ← Csθ
15: while

∣∣(θ1 + θ2)− θsum
∣∣ ≥ crit

16: return θ1+θ2

2
17: end procedure
18: With CMAPPING(L) R12N → R12N×Sθ and

DMAPPING(Ls, Lr) R12N → R12N 2 procedures
which respectively create C and d as in (36).

IV. SIMULATIONS

Realistic simulations based on data from real PMU mea-
surements of a 125kV sub-transmission grid (see Figure 5)
has been used to assess the performances of the proposed
methods on different line models. As it can be observed from
Figure 5, the grid contains 7 buses connected by 10 lines. The
lines can be grouped into two classes. First, the underground
coaxial lines (e.g. line 2), characterised by null terms for the
non-diagonals of the shunt admittance matrix. Consequently
these lines can be expressed with Sθ = 15. The second class
contains overhead lines (e.g. line 10), resulting in the generic
TL model with Sθ = 18. Another important property of the
network’s lines is that they are transposed which permits their
modelling with Sθ = 5 or Sθ = 6 depending on if the line
is underground or overhead. Hereunder the methodology used
to create the dataset and the results of the different estimation
methods applied to some lines of the grid are presented.

A. Methodology

The dataset used to compare the estimation methods con-
tains one day of PMU measurements. The dataset contains
current and voltage phasor measurements of both ends of
all the lines. The PMUs measure currents and voltages at a
frequency of 50 frames per second. This results in a maximum

Fig. 5. Grid topology of the 125kV sub-transmission grid at Lausanne,
Switzerland.

of 24×3600×50 ≈ 4.3e6 samples. The dataset also provides
lines parameter values.

Although the value of the line parameter provided by the
grid constructor may not be accurate, we assume them to
be the ground truth to asses the accuracy of the estimation
methods. For each line, using the line parameter and the
measurements at one end of the line (either Ls or Lr) we
generate artificial exact measurements of the other end of the
line. We then add artificial noise as described in section II-C to
generate realistic measurements. This procedure is described
in Algorithm 2. The noise is generated using values from Table
I.

Remark. It is important to notice that depending on the line
model used, the generation method could give rise to an unre-
alistic dataset. Indeed a very similar generation method could
make use of the impedance (Z) matrix or the admittance (Y)
matrix of the line instead of the transmittance (T) matrix used.
However the Z and Y matrix formulations are very sensitive
to measurement noise. Table III presents a comparison of the
average relative deviation of the samples artificially generated
by the line models (Z, Y or T matrix) from the samples given
in the dataset. From the table we observe that the deviations
are least when the transmittance matrix is used to model the
line. The small deviations we observe for this case are due to
measurement noise.

TABLE III
AVERAGE RELATIVE DEVIATION BETWEEN SAMPLES GENERATED AND

MEASUREMENTS.

Model T Z Y
Average relative error 0.00773 0.0505 6.35

The methodology used to assess the performance of the
proposed methods consists in 1) the samples generation, 2) the
application of the estimation method(s) to these samples, and
3) then to assess the performance of the estimation method(s).
The metrics used to evaluate the performance of an estimation
method are the average relative error or the average relative
error per component of the parameter vector. The first is
mathematically defined as follows:

eθ =
1

Sθ

Sθ∑
i=1

∣∣∣∣∣θi − θ̂iθi

∣∣∣∣∣× 100
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and the latter is defined as follows:

eθi =

∣∣∣∣∣θi − θ̂iθi

∣∣∣∣∣× 100 ∀i ∈ [1,Sθ].

In the following, each experiment consists in repeating this
methodology 10 times and averaging the results. To simplify
our notations, in the following we use θ without a superscript
to denote the parameter vector θT of the T model unless
specified otherwise.

Algorithm 2 Samples generation
1: procedure GENSAMPLES

2: for line id = 1 : 10 do
3: Zl ← GETZLINE(line id)

4: Yl ← GETYLINE(line id)

5: for n = 1 : N do

6:

vrn
irn

← GETMEASUREMENTS(line id, N)

7:

vss
isn

←
 I + ZlYl

2 −Z

Yl

(
I + ZlYl

4

)
−
(
I + ZlYl

2

)
vrn

irn


8: for x = [vrn, v

s
n, i

r
n, i

s
n] do

9: ∆ρ ← N (0, α3 |x|)
10: ρ̃← |x|+ ∆ρ

11: ∆φ ← N (0, β3 )

12: φ̃← ∠x + ∆φ

13: w = ρ̃ejφ̃

14: end for
15: l̃rn ← [R

(
(vrn)T , (irn)T

)
, I
(
(vrn)T , (irn)T

)
]

16: l̃sn ← [R
(
(vrn)T , (irn)T

)
, I
(
(vrn)T , (irn)T

)
]

17: end for
18: end for
19: L̃

r ←
[
l̃r1 . . . , l̃

r
N

]T
20: L̃

s ←
[
l̃s1 . . . , l̃

s
N

]T
21: return L̃

s
, L̃

r

22: end procedure
GETMEASUREMENTS(line id, N ) being a procedure which
draws N measurements of a the line line id uniformly at
random without replacement from the dataset (N < 4.2e6).

B. Results

In this sub-section we first compare the different estimation
methods in terms of computing time and accuracy. Based on
these results we also compare different models discussed in
this thesis and previous works.

We observed during our experiments that the error of
OTLS methods was decreasing with the number of samples.
However, the rate of decrease is very small, in particular even
for 3 millions of samples we obtain the result of Table IV. This
table presents the mean squared error (MSE) obtained with

both unstructured and structured OTLS (SOTLS) and OLS.
The methods are compared for the 2 types of lines with 3
millions of samples measured by class 1 IT. As it can be
observed form the table, the OLS significantly outperforms
the OTLS methods. The structured and unstructured OTLS
completely fails at recovering the right parameters in the pres-
ence of noise. To find an accurate explanation why whether
or not OTLS should work is difficult in this case because the
assumption of homoscedasticity is not respected. Indeed all
the theoretical results about the convergence of OTLS require
homoscedasticity.

TABLE IV
MSE OF ESTIMATED θ FOR UOTLS, SOTLS AND OLS WITH IT OF CLASS

1 AND N = 3× 106 .

Line Coaxial Non coaxial
Sθ 15 18

OLS 3.7014e-08 6.6537e-07
UOTLS 5.7140e-04 3.8823e+03
SOTLS 1.2709e+06 1.9371e+05

Table V presents the MSE of WLS and IWLS estimation
methods in comparison with OLS. The estimation methods
have been applied for sampleset of size N = 3× 105 and for
IT of class 1. It can be observed from this table that WLS
methods slightly outperforms OLS. Moreover IWLS does not
improve the quality of the results for this number of samples.

TABLE V
MSE OF ESTIMATED θ FOR OLS, WLS AND IWLS WITH IT OF CLASS 1

AND N = 3× 105 .

Line Coaxial Non coaxial
Sθ 15 18

OLS 2.1251e-05 1.7893e-05
WLS 7.5926e-07 8.6151e-07
IWLS 1.1170e-06 1.1213e-06

In Figure 6 we show the evolution of the average relative
error as a function of the number of samples, N for OLS, WLS
and WTLS. It can be observed from this figure that 1) all the
estimation methods improve the quality of the estimation with
the number of samples and 2) all the estimation methods tend
to have similar accuracy with a large number of samples. To
evaluate the robustness of these estimation methods we also
analysed the variance of the estimation methods as a function
of the number of samples. The variance of each component
of the parameter vector is different. Therefore, we plot the
component with the maximum value which is representative
of the worst case performance of the estimation method. In
Figure 7 we plot the maximum standard deviation as a function
of the number of samples. It can be observed from this figure
that 1) all the estimation methods have a decreasing worst case
standard deviation with the increase in the number of samples
and 2) all the estimation methods have similar behaviours in
terms of worst case standard deviation. Same type of graphics
are shown in the appendix V-D for other lines, the discussion
is also valid. It is worth to notice that WTLS does not always
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outperform the other methods. This can be explained by 1)
the fact that there is no guarantee that the solution returned
by fminunc is a global optimum and 2) for a finite number
of samples there is no guarantee of the superiority of the ML
estimate over other estimates. Moreover in the EIV model the
effective parameter space increases at the same rate as the
number of samples which is contrary to the standard least
square models.

We also compared the estimation methods in terms of their
computation time. In Table VI we present the computation
time of each estimation method for different number, N , of
samples. It can be observed that OLS outperforms the other
estimation methods from this perspective. Indeed, on one side
WLS requires the inverse of the covariance matrices to be
computed and to be kept in the memory. And on the other side
brute force approach requires gradient and function evaluation
which has a complexity of O(N). Although all these methods
have linear complexity, in the subsequent experiments we keep
only WLS method because it requires an acceptable amount
of computation while being the most accurate for almost all
the cases.

TABLE VI
AVERAGE COMPUTING TIME (IN SECONDS) OF THE MAIN ESTIMATION

METHODS.

N◦ samples WLS OLS WTLS
102 0.02 0.008 1.38
103 0.21 0.013 15.9
104 1.9 0.021 165
105 19 0.15 x
106 267 2.7 x
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Fig. 6. Average relative error evolution for T line model.

A more accurate overview of the performance of the WLS
method with N = 3 × 106 is presented in Table VII for an
overhead line (Sθ = 18) and an underground coaxial line
(Sθ = 15). For this table and all the results presented in this
section, the results of each experiment have been averaged
over 10 experiments as said above. Although overhead lines
are characterized by 18 unknown parameters (Sθ = 18),
as described in the beginning of the section, the parameter
vector provided by the grid constructor only contains 6 distinct
values. We exploit this property to ease the visualization of
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Fig. 7. Evolution of the maximun standard deviation of the relative error over
θ parameters for T line model.

the results. In particular Yl(θ) and Zl(θ) can be expressed
as in (45) and (46) with Sθ = 6. Similarly, the underground
coaxial line has only 5 distinct values, where θ6 = 0 in (45).
Although the estimation method is made with Sθ = 18 or
Sθ = 15, we report the average relative error made by the
parameters estimating the same value. For example, the fifth
row of the Table VII is computed as the average value of
1
3 (eθ1 + eθ2 + eθ3) over the 10 repetitions of the estimation
process. For both lines we observe 1) that with weaker noise
the accuracy of the estimation improves and 2) the estimation
accuracy depends on the parameter component considered.

TABLE VII
ABSOLUTE RELATIVE ERROR (IN %) PER θ COMPONENT OF T LINE

MODEL FOR 2 UNTRANSPOSED LINES AND 2 EXTREME CLASS OF IT -
N = 3× 106 .

Line Coaxial (Sθ = 15) Non coaxial (Sθ = 18)
IT class 0.1 1 0.1 1
eθ1 28 59 2.8 12
eθ2 17 38 1.1 7.9
eθ3 58 120 8.1 25
eθ4 64 160 2.8 19
eθ5 0.004 0.01 24 25
eθ6 / / 180 190

Yl(θ) =

θ5 θ6 θ6

θ6 θ5 θ6

θ6 θ6 θ5

 j (45)

Zl(θ) =

θ1 + θ2j θ3 + θ4j θ3 + θ4j

θ3 + θ4j θ1 + θ2j θ3 + θ4j

θ3 + θ4j θ3 + θ4j θ1 + θ2j

 (46)

We can further take advantage of this property of the lines
considered to use a parameter space with a smaller size Sθ.
Using a smaller parameter space we evaluate the sensitivity of
the WLS method on different type of IT classes in Table VIII.
It is interesting to compare this table with Table VII. Indeed
the 2 observations made for Table VII are also valid for the
Table VIII. However, unsurprisingly, it can be observed that
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the quality of the estimation is much better when we use a
smaller parameter space.

TABLE VIII
ABSOLUTE RELATIVE ERROR (IN %) PER θ COMPONENT OF T LINE
MODEL FOR 2 TRANSPOSED LINES AND 2 EXTREME CLASS OF IT -

N = 3× 106 .

Line Coaxial (Sθ = 5) Non coaxial (Sθ = 6)
IT class 0.1 1 0.1 1
eθ1 1.4 16 0.19 2.4
eθ2 2.2 6.3 0.17 0.87
eθ3 13 48 1.9 7.7
eθ4 18 54 0.73 3.1
eθ5 0.0033 0.01 17 25
eθ6 / / 130 190

C. Comparison of line models: Fisher Information Matrix

In this section we use 2 metrics to compare the different
line models. The first is theoretical and does not rely on the
estimation method but only on the statistical model, it is called
Cramer-Rao bound (CRB) and is defined through the Fisher
Information Matrix (FIM). The FIM is a matrix which mea-
sures the quantity of information that some observations carry
out about a parameter vector. The second metric is the per
component relative error, although it relies on the estimation
methods, we show that both CRB and per component relative
error lead to the same conclusion.

Using the log-likelihood function it is possible to derive the
FIM of the statistical model (see V-E for detailed derivation).
It is given by:

I(x, θ) =

[
Q−1
x + B̄(θ)Q−1

y B̄(θ)T B̄(θ)Q−1
y H(x)]

H(x)TQ−1
y B̄(θ)T H(x)TQ−1

y H(x).

]
,

for which each term can be computed from the statistical
model. The CRB can be derived from the FIM as follows:

Covx,θ(T (x̃, ỹ)) � [I(x, θ)]
−1 (47)

where T (x̃, ỹ) is an unbiased estimator of [x, θ] and A � B
denote that A − B is positive semi definite. In particular it
also gives a bound on the mean squared error of any unbiased
estimator:

MSE(T (x̃, ỹ)) = trace (Covx,θ(T (x̃, ỹ))) (48)

≥ trace
(

[I(x, θ)]
−1
)

(49)

As previously mentioned the transmittance (T) matrix
formulation is preferred for its greater robustness to noise.
Hereunder we show the superiority of T matrix for short TL
parameter estimation in comparison to impedance (Z) and
admittance (Y) matrix formulation.

CRB cannot be applied directly to compare the performance
of the different estimation methods defined previously because
they are not unbiased. However it can be used to get insights
on the quality of the different line models (Z, Y and T) for
parameter estimation purpose. Table IX presents a comparison

between the different line models in term of their CRB.
Although the CRBs are respectively related to the line model
parameters, it can still be concluded from it that theoretically
the T formulation should be an easier estimation problem than
the 2 other formulations. This can be explained because on one
side the T formulation do the estimation of line impedance
(Zl) and shunt admittance (Yl) independently. Whereas on
the other sides the 2 other formulations shuffle the estimation
of Zl (or its inverse) and of Yl (or its inverse). Moreover,
as shown in Tables XII and XIII, the magnitudes of the
parameters are very diverse and so these two models makes
the parameter estimation problem more difficult. It is clear that
for Y model there will be a length of line for which the order
of magnitude of the parameters will be very close (because
the small parameters increase whereas the others decrease)
and so increasing the line length should improve the quality
of the estimates. Indeed if we keep on lengthen the line the
estimation based on Y reach an error minimum and then start
increasing again. There is a similar effect on parameter of the
Z model when the line is lengthen. However, probably because
of the sensitivity of the formulation we see that the minimum
error of Z is reached before the one of Y and is not very
accurate in term of Y matrix reconstruction. Figure 8 shows
the quality of estimation depending on the line length. It can
be observed that T models become worse whereas the effect
is opposite for Z and Y.

TABLE IX
COMPARISON BETWEEN T, Z AND Y IN TERM OF CRB - Sθ = 18 AND

N = 1000.

Model T Z Y
IT .1 1 .1 1 .1 1

tr(ΣCR) 2.0e-04 2.2e-02 8.2e+05 9.2e+07 8.5e+03 9.6e+05

Table X presents the empirical sensitivity analysis for an
underground line with Sθ = 18. In order to be able to compare
the 3 different formulations (Z, Y and T matrix formulations)
we mapped the estimated values to a common parameter space.
The space of Y parameters (θY) is chosen because it is the
most commonly used for specifying line parameters.

Table X presents results for the 3 line models presented (T,
Z and Y) with the best and the worst IT classes. These results
confirm what was discussed earlier about the superiority of T
formulation in comparison to Z and Y formulations for short
TL.

Moreover we also compare our formulation with the one
used in [13], [14], in [13] the authors proposed to use OLS
with equations very similar to the ones given by the Y model
of the line. In [14] the authors used the same objective function
as in [13] but added constraint on the values of the parameters.
Table XI presents the relative errors obtained by the method
proposed in [13], it can be observed that for the type of lines
considered the method proposed in [13] fails to find the right
parameters. Even for the best class of IT the results approach
100% of relative error. Indeed the results of XI are very similar
to the one obtained by the Y model. Di shi et al. in their work
already noticed the poor quality of their methods for short TL.
We also show in Figure 8 the impact of line length on the
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quality of the reconstructed Y matrix, the metric used is the
normalized MSE. This metric has 2 advantages, 1) it does not
rely too much on the true value of the parameters (and so of
the length) and 2) it gives a good insight if the reconstruction
can be used for practical use or not.

TABLE X
ABSOLUTE RELATIVE ERROR (IN %) OBTAINED WITH T, Z AND Y

MODELS OF THE LINE - Sθ = 18 AND N = 3e6 .

Model T Z Y
IT .1 1 .1 1 .1 1
eψ1

4 7.2 34 150 80 99
eψ2

14 21 36 320 67 99
eψ3

1.8 2.8 12 97 80 99
eψ4

5.5 7.7 43 120 69 99
eψ5

24 25 1800 400 460 130
eψ6

180 190 13000 3100 2900 160

TABLE XI
ABSOLUTE RELATIVE ERROR (IN %) OBTAINED WITH THE ESTIMATION

METHOD PROPOSED IN [13] FOR N = 3e6 .

Line type Coaxial Overhead
IT .1 1 .1 1
eθY1

99 100 76 99

eθY2
100 100 62 99

eθY3
99 100 77 99

eθY4
97 100 61 99

eθY5
230 73 240 590

eθY6
/ / 6900 2700
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TABLE XII
TRUE VALUE OF THE PARAMETERS OF COAXIAL LINE (Sθ = 5).

θ1 2.8e-04
θ2 5.2e-04
θ3 1.2e-04
θ4 -1.2e-04
θ5 5.3e-02

θY1 7.3e+02
θY2 3.7e+02
θY3 -1.3e+03
θY4 2.2e+02
θY5 5.3e-02

θZ1 2.8e-04
θZ2 5.2e-04
θZ3 1.2e-04
θZ4 -1.2e-04
θZ5 1.9e+01

TABLE XIII
TRUE VALUE OF THE PARAMETERS OF OVERHEAD LINE (Sθ = 6).

θ1 1.8e-03
θ2 5.1e-03
θ3 6.3e-04
θ4 2.1e-03
θ5 5.0e-03
θ6 -6.6e-04

θY1 8.6e+01
θY2 -2.7e+01
θY3 -2.3e+02
θY4 6.4e+01
θY5 5.0e-03
θY6 -6.6e-04

θZ1 1.8e-03
θZ2 5.1e-03
θZ3 6.3e-04
θZ4 2.1e-03
θZ5 2.1e+02
θZ6 3.2e+01

V. CONCLUSION

We presented methods to estimate parameters of three-phase
untransposed lines based on different line models. From the
comparison of the different methods and line models we can
draw the following important conclusions: 1) The T model
provides more accurate and robust estimates of the line param-
eters than the Y and Z models for short lines. However, we
also observed that the accuracy and robustness of a particular
model depends on the length of the line. In particular it may be
beneficial to use the Y model for longer lines. 2) For a given
line model and given length, different estimation methods give
rise to different accuracy and have different computational
complexities. In particular, for the T model we observe that the
WLS method almost always marginally outperforms the other
estimation methods in terms of accuracy and has a reasonable
computational complexity. The WTLS method, although being
asymptotically optimal, provides less accurate estimates than
the WLS for finite number of samples and for the specific
scenarios considered in the thesis. Moreover, it is prohibitive in
terms of computational complexity because it requires to solve
a non-convex optimization problem. The OLS method has a
reasonable accuracy with the least computational complexity.
Finally, we observe that the OTLS methods in most of the
cases considered yield unusable estimates of the parameters
because of slow convergence rates.

There are several interesting avenues for future research. We
believe that combinations of different line models could give
rise to better and more stable estimates of line parameters.
Furthermore, state-of-the-art machine learning methods can
also be envisioned to select the correct line model(s) to be
used for specific estimation scenarios.
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APPENDIX

A. Noise derivation

Using Moment Generating Function (MGF) of φ̃ ∼ N (φ, σφ)

we have:

Mφ̃(t) = E
[
eφ̃t
]

(50)

= eφt+
σ2φt

2

2 (51)

Which easily leads to:

E
[
cos(φ̃)

]
= E

[
R
(
eφ̃j
)]

(52)

= R
(
E
[
eφ̃j
])

(53)

= R
(
eφj−

σ2φ
2

)
(54)

= cos(φ)e−
σ2φ
2 (55)

and similarly to:

E
[
sin(φ̃)

]
= E

[
I
(
eφ̃j
)]

(56)

= I
(
E
[
eφ̃j
])

(57)

= I
(
eφj−

σ2φ
2

)
(58)

= sin(φ)e−
σ2φ
2 (59)

.
The expected value of the real and imaginary part of the

noise can then be derived as follows:

E[∆r] = E
[
ρ̃ cos(φ̃)− ρ cos(φ)

]
(60)

= ρE
[
cos(φ̃)

]
− ρ cos(φ) (61)

= ρ cos(φ)e−
σ2φ
2 − ρ cos(φ) (62)

= ρ cos(φ)
(
e−

1
2
σ2
φ − 1

)
(63)

E [∆i] = E
[
ρ̃ sin(φ̃)− ρ sin(φ)

]
(64)

= ρE
[
sin(φ̃)

]
− ρ cos(φ) (65)

= ρ sin(φ)e−
σ2φ
2 − ρ cos(φ) (66)

= ρ sin(φ)
(
e−

1
2
σ2
φ − 1

)
(67)

.
Finally the second moment of the real and imaginary part

of the noise can then be derived as follows:

E[∆2
r] = E

[(
ρ̃ cos(φ̃)− ρ cos(φ)

)2]
(68)

= E
[
ρ̃2 cos(φ̃)2 + ρ2 cos(φ)2 − 2ρ̃ρ cos(φ̃) cos(φ)

]
(69)

= E
[
ρ̃2
]
E
[
cos(φ̃)2

]
+ ρ2 cos(φ)2

− 2ρ cos(φ)E [ρ̃]E
[
cos(φ̃)

]
(70)

, where we have:

E
[
ρ̃2
]

= V ar [ρ̃] + E [ρ̃]2 (71)

=
α2ρ2

9
+ ρ2 (72)

= ρ2
(
α2

9
+ 1

)
(73)

E
[
cos(φ̃)2

]
= E

[
cos(2φ̃) + 1

2

]
(74)

=
1

2

(
1 + E

[
cos(2φ̃

])
(75)

=
1

2

(
1 + E

[
R(e2φ̃j

])
(76)

=
1

2

(
1 +R

(
E
[
e2φ̃j

]))
(77)

=
1

2

(
1 +R

(
e2φj−

4σ2φ
2

))
(78)

=
1

2

(
1 + cos(2φ)e−2σ2

φ

)
(79)

. Then, inserting (73), (79) and (55) in (70) we get:

E
[
∆2
r

]
=

1

2

(
1 +

α2

9

)
ρ2
(

1 + e−2σ2
φ cos(2φ)

)
+ ρ2 cos2(φ)

(
1− 2e(−

1
2
σ2
φ)
)

(80)

. In a very similar way we easily get that:

E
[
∆2
i

]
=

1

2

(
1 +

α2

9

)
ρ2
(

1− e−2σ2
θ cos(2θ)

)
+ ρ2sin2(φ)

(
1− 2e(−

1
2
σ2
φ)
)

(81)

Finally, by using MGF of θ and trigonometric formulas, the
covariance between imaginary and real parts of the noise can
be easily derived as follows:

E [∆r∆i] = E
[(
ρ̃ cos(φ̃)− ρ cos(φ)

)(
ρ̃ sin(φ̃)− ρ sin(φ)

)]
(82)

= E
[
ρ̃ cos(φ̃)ρ̃ sin(φ̃)− ρ̃ cos(φ̃)ρ sin(φ)

−ρ cos(φ)ρ̃ sin(φ̃) + ρ cos(φ)ρ sin(φ)
]

(83)

= E
[
ρ̃2
] 1

2
E
[
sin(2φ̃)

]
− E [ρ̃]E

[
cos(φ̃)

]
ρ sin(φ)

− E [ρ̃]E
[
sin(φ̃)

]
ρ cos(φ) +

ρ2

2
sin(2φ) (84)

=
1

2
sin(2φ)

[(
1 +

α2

9

)
ρ2e−2σ2

φ − 2ρ2e−
1
2
σ2
φ + ρ2

]
(85)

B. OLS bias under EIV model

To ease notation we denote H(x̃) as H̃ and d̃ = ỹ − γ(x̃).
When the observations are assumed to be independent (44)
becomes

θ̂ols =
(
H̃T H̃

)−1
H̃T d̃

. This equation can be rewritten as follows:

θ̂ols =

(
N∑
i=1

H(x̃i)
TH(x̃i)

)−1( N∑
i=1

H(x̃i)
T d̃i

)

, where

d̃i = yi − γ(xi) + ∆di ∆di ∼ N
(
0, Qdi

)
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. Under this model we can compute the asymptotic bias of the
OLS estimator as follows:

lim
N→∞

θ̂ols = lim
N→∞

(
N∑
i=1

H(x̃i)
TH(x̃i)

)−1( N∑
i=1

H(x̃i)
T d̃i

)
(86)

= lim
N→∞

(
1

N

N∑
i=1

H(x̃i)
TH(x̃i)

)−1(
1

N

N∑
i=1

H(x̃i)
T d̃i

)
(87)

By the continuous mapping theorem and Slutsky’s theorem
we have that, defining aN and bN to be two series of random
variables:

aN
p→ a and bN

p→ b

. It follows by continuous mapping theorem that:

(aN )−1 p→ (a)−1

. Moreover if a and b are two constant values, applying
Slutsky’s theorem gives:

(aN )−1 bN
d→ (a)−1 b

but the product (a)−1 b is also a constant value and so

(aN )−1 bN
p→ (a)−1 b

.
If we redefine (without loss of generality) the H : R12 →

R12×Sθ mapping as:

H(x)T =
[
Ω̄1x . . . Ω̄12x

]
, where x ∈ R12 and Ω̄j ∈ RSθ×12, ∀j ∈ [1, 12]. If we also
define H(x)j = Ω̄jx, ∀j ∈ [1, 12] and the associated noise vector
∆Hj(x)

= Ω̄j∆x ∼ N
(

0, Ω̄jQxΩ̄T
j

)
. For simplicity we also

define QHj(xi)
= Ω̄jQxΩ̄T

j Using the previous result and the
new defined variables we can define

aN =

(
1

12N

N∑
i=1

Hx̃Ti H(x̃i)

)
(88)

=
1

12N

N∑
i=1

12∑
j=1

Ω̄j x̃i (x̃i)
T Ω̄T

j (89)

=
1

12N

N∑
i=1

12∑
j=1

(
Ω̄jxixi

T Ω̄T
j + Ω̄j∆xi∆

T
xi

Ω̄T
j

+Ω̄jxi∆
T
xi

Ω̄T
j + Ω̄j∆xixi

T Ω̄T
j

)
(90)

=
1

12N

N∑
i=1

12∑
j=1

(
Hj(xi)

THj(xi) + Hj(xi)
T∆Hj(xi)

+

∆T
Hj(xi)

Hj(xi) + ∆T
Hj(xi)

∆Hj(xi)

)
(91)

p→
1

12N

N∑
i=1

12∑
j=1

(
Hj(xi)

THj(xi) +QHj(xi)

)
(92)

This holds because by law of large numbers
N∑
i=1

12∑
j=1

∆Hj(xi)

12N

p→ 0

and also thanks to Hoeffding bound on random sub-gaussian
variables (proposition 2.1 in [22]). The latter gives:

N∑
i=1

12∑
j=1

∆T
Hj(xi)

∆Hj(xi)

12N

p→
N∑
i=1

12∑
j=1

QHj(xi)

12N

. And also define:

bN =

(
1

12N

N∑
i=1

H(x̃i)
T d̃i

)
(93)

=

(
1

12N

N∑
i=1

(
H(xi) + ∆H(xi)

)T (
H(xi)θ + ∆di

))
(94)

p→
1

12N

N∑
i=1

H(xi)
T (H(xi)θ) (95)

. Defining the average covariance matrix of H matrix of ith
observation as

QH(xi)
=

1

12

12∑
j=1

QHj(xi)

, the asymptotic bias of the OLS estimator is

θ̂ols
p→
(
N∑
i=1

(
H(xi)

TH(xi) +QH(xi)

))−1 N∑
i=1

H(xi)
TH(xi)θ

(96)

p→

ISθ −
(
N∑
i=1

H(lri )TH(xi) +QH(xi)

)−1 N∑
i=1

QH(xi)

 θ

(97)

.
If we define Hwls(xi) and Q−1

Hwls(xi)
as follow:

Hwls(xi) = Q
−1/2
xi H(xi) (98)

Q−1
Hwls(xi)

= Ω̄jQ
−1/2
xi QxiQ

−1/2
xi

T
Ω̄T
j (99)

Then we can also easily show that the bias of the WLS
estimation methods under EIV model is equal to

θ̂ols
p→
(
N∑
i=1

(
Hwls(xi)

THwls(xi) +QHwls(xi)

))−1

(
N∑
i=1

Hwls(xi)
THwls(xi)θ

)
(100)

p→

ISθ−

(
N∑
i=1

Hwls(xi)
TH(xi) +QHwls(xi)

)−1 N∑
i=1

QHwls(xi)

 θ

(101)

.

C. Fisher Information Matrix

The derivation of the fisher information matrix of the line’s
parameters estimation problem can be computed as follows:

I(θ, x) =

E[∇x∇Tx ] E[∇x∇Tθ ]

E[∇θ∇Tx ] E[∇θ∇Tθ ]


Where ∇x stands for ∇x log(f(x̃, x̃|θ, x)) and ∇θ stands for

∇θ log(f(x̃, ỹ|θ, x)). It can be shown that

∇xlog (f(x̃, ỹ|θ, x)) =Q−1
x (x̃− x)+

B̄(θ)Q−1
y

(
ỹ − B̄(θ)x

)
(102)

∇θlog (f(x̃, ỹ|θ, x)) =H(x)TQ−1
y (ỹ −H(x)θ − γ(x)) (103)
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We can express these expressions in the following way:

∇xlog (f(x̃, ỹ|θ, x)) =Q−1
x (x̃− E [x̃])+

B̄(θ)Q−1
y (ỹ − E [ỹ]) (104)

∇θlog (f(x̃, ỹ|θ, x)) =H(x)TQ−1
y (ỹ − E [ỹ]) (105)

Because x̃ and ỹ are independent random variables, the fol-
lowing equalities hold:

E
[
∇x∇Tx ] =E

[
Q−1
x (x̃− E[x̃]) (x̃− E[x̃])T Q−1

x
T

+

B̄(θ)Q−1
y (ỹ − E [ỹ])(

B̄(θ)Q−1
y (ỹ − E [ỹ])

)T ] (106)

= Q−1
x + B̄Q−1

y B̄(θ)T (107)

. We can obtain the other term similarly, it finally yields:

I(θ, x) =

Q−1
x + B̄Q−1

y B̄T B̄Q−1
y H(x)]

H(x)TQ−1
y B̄T H(x)TQ−1

y H(x)



.

D. Estimation Methods Comparison

Fig. 9. Relative errors of different estimation methods
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Fig. 10. Sθ = 15 - IT class = 0.1
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Fig. 11. Sθ = 18 - IT class = 1
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Fig. 12. Sθ = 15 - IT class = 0.1
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Fig. 13. Sθ = 18 - IT class = 1
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E. Cramer-Rao Bound Comparison

TABLE XIV
COMPARISON BETWEEN T, Z AND Y IN TERM OF CRB - Sθ = 15 AND

N = 1000

Model T Z Y
IT .1 1 .1 1 .1 1

tr(ΣCR) 3.2e-05 3.5e-03 3.6e-05 4.0e-03 2.5e+08 2.7e+10

TABLE XV
COMPARISON BETWEEN T, Z AND Y IN TERM OF CRB - Sθ = 6 AND

N = 1000

Model T Z Y
IT .1 1 .1 1 .1 1

tr(ΣCR) 3.3e-06 3.7e-04 1.7e+04 1.9e+06 4.9e+01 5.5e+03

TABLE XVI
COMPARISON BETWEEN T, Z AND Y IN TERM OF CRB - Sθ = 5 AND

N = 1000

Model T Z Y
IT .1 1 .1 1 .1 1

tr(ΣCR) 2.7e-07 3.1e-05 6.8e-07 7.9e-05 2.1e+06 2.4e+08

F. Coefficient pseudocode

Algorithm 3 HT mapping
1: procedure HT(l)
2: for i = 1 : 18 do
3: θ ← e

(18)
i

4: for j = 1 : 12 do
5: l← e

(12)
j

6: Ωi(:, j)← T̄(θ)l − γ(l)
7: end for
8: HT(l)(:, i)← Ωil
9: end for

10: return HT(l)
11: end procedure

Remark. The pseudo code can be very simply generalized for
Z and Y line models.

G. T,Y,Z comparison

TABLE XVII
COMPARISON BETWEEN T, Z AND Y IN TERM OF RELATIVE ERROR (IN %)

- Sθ = 6 AND N = 3e6

Model T Z Y
IT .1 1 .1 1 .1 1
eθY1

0.6 1.4 2.3 80 82 99

eθY2
0.81 2.1 5.5 51 72 99

eθY3
0.62 0.52 0.73 22 83 99

eθY4
1.4 2.5 1.6 36 70 99

eθY5
17 25 1800 390 7000 630

eθY6
130 190 13000 3000 52000 4100

TABLE XVIII
COMPARISON BETWEEN T, Z AND Y IN TERM OF RELATIVE ERROR (IN %)

- Sθ = 15 AND N = 3e6

Model T Z Y
IT .1 1 .1 1 .1 1
eθY1

24 42 67 96 100 100

eθY2
59 86 140 100 100 100

eθY3
17 31 18 100 99 100

eθY4
73 130 130 100 98 100

eθY5
0.004 0.001 0.0037 0.18 76 87

TABLE XIX
COMPARISON BETWEEN T, Z AND Y IN TERM OF RELATIVE ERROR (IN %)

- Sθ = 5 AND N = 3e6

Model T Z Y
IT .1 1 .1 1 .1 1
eθY1

5.7 32 66 140 100 100

eθY2
11 69 130 59 100 100

eθY3
3.7 13 13 130 99 100

eθY4
16 73 100 190 98 100

eθY5
0.0033 0.01 0.0028 0.16 53 38
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